
ProfessorX: Detecting Silent Vulnerabilities in Policy Engine
Implementations

Ben Weintraub∗
Northeastern University

Boston, MA, USA
weintraub.b@northeastern.edu

Chanyuan Liu∗
Northeastern University
Vancouver, BC, Canada

liu.chany@northeastern.edu

William Enck
North Carolina State University

Raleigh, NC, USA
whenck@ncsu.edu

Cristina Nita-Rotaru
Northeastern University

Boston, MA, USA
c.nitarotaru@northeastern.edu

Abstract

Enterprises that own or handle sensitive resources rely on access
control models to protect those resources. NIST has recently stan-
dardized a new access control model called Next Generation Access
Control (NGAC) and provided a reference implementation. Despite
the importance of properly functioning access control systems, lit-
tle work has been done to verify that the software implementing
NGAC properly conforms to the NGAC standard. Prior approaches
for finding bugs are either designed to detect fail-stop faults, or
model the protocol or software itself, which does not identify dis-
crepancies between software and standards.

In this paper, we solve this problem with a methodology we call
policy engine differential mutation analysis, which we implement in
a system called ProfessorX. ProfessorX detects access decision
discrepancies between policy engine implementations—specifically,
the NIST reference implementation, and our own implementation
of the standard. If there are no discrepancies, we mutate the policy
slightly and then try again. Using this technique, we identified two
novel vulnerabilities, and show that our system is fast enough to
be practically useful to developers.

CCS Concepts

• Security and privacy→ Authorization; • Software and its

engineering→ Software verification and validation.

Keywords

Differential Testing; NGAC; Mutation Analysis; Security

ACM Reference Format:

BenWeintraub, Chanyuan Liu,William Enck, and Cristina Nita-Rotaru. 2025.
ProfessorX: Detecting Silent Vulnerabilities in Policy Engine Implementa-
tions. In Proceedings of the 30th ACM Symposium on Access Control Models
and Technologies (SACMAT ’25), July 8–10, 2025, Stony Brook, NY, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3734436.3734446

∗Both authors contributed equally to the paper

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SACMAT ’25, Stony Brook, NY, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1503-7/2025/07
https://doi.org/10.1145/3734436.3734446

1 Introduction

Access control systems are designed to restrict access of sensitive
resources to only people who need such access to perform their
jobs, and over the years, numerous access control models have been
created and developed to help achieve these goals [6, 20, 21]. Of
particular utility are attribute-based access control (ABAC) [25]
and role-based access control (RBAC) [18] due to how attributes
and roles relate to job functions within organizations. However,
even these models constrain policy administrators—forcing them
to structure their policies in ways that are representable in their
chosen access control system [17].

The US government has a history of interest in access control
models dating back at least to 1976 [5]. So it is no surprise that
in response to these problems, the US National Institute for Stan-
dards and Technologies (NIST) developed and standardized a new
enterprise access control framework in 2015 called Next Genera-
tion Access Control (NGAC) [17]. NGAC’s key benefit is its ability
to model and maintain compatibility with numerous alternative
policy frameworks including ABAC, RBAC, and ACLs [16], and per-
mit implementation of these models in centralized and distributed
settings. As a result, NGAC is recommended by NIST as an autho-
rization framework for deploying microservice architectures [11]
and cloud-native applications in distributed environments [10].

Core to NGAC’s specification is a mathematical model that de-
fines how access decisions should bemade in the presence of various
types of rules. The model is a description of a finite state machine
whose access decision function takes as input a request for access
and outputs a decision to grant or deny access. NGAC consists of a
number of policy elements and relations between them, and thus
can be used to model ABAC, RBAC, and other types of policies.

NIST has provided a reference implementation of an NGAC-
compatible policy engine [36] that provides access decisions for
arbitrary NGAC policies. We call this implementation NGACNIST.
However, the flexibility that is key to NGAC’s utility also makes
it complex to implement. Deviation from the specification could
constitute a security-critical bug. For example, a deviation could
be exploited to allow access to a resource in violation of a policy’s
intent. Prior work has considered the correctness of specific NGAC
policies [12] and has used NGACNIST for runtime enforcement [2, 3].
However, these all assume NGACNIST is correct. While NGACNIST con-
tains unit tests, these tests are limited by the developers’ creativity
for building (or simulating) diverse program states.

https://orcid.org/0000-0002-9527-5888
https://orcid.org/0009-0002-1180-7929
https://orcid.org/0000-0002-3043-8092
https://orcid.org/0000-0002-9649-6789
https://doi.org/10.1145/3734436.3734446
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3734436.3734446


SACMAT ’25, July 8–10, 2025, Stony Brook, NY, USA Ben Weintraub, Chanyuan Liu, William Enck, and Cristina Nita-Rotaru

Software bug finding is a robust field that includes methods such
as fuzzing, formal methods, and program analysis. Fuzzing works
best at detecting fail-stop faults but is limited when faults in the
implementation are silently incorrect. Another approach, formal
methods, are generally applied to protocols or specifications in the
abstract [7, 24, 30], or used to directly develop verified programs
using theorem provers [1, 26]. In cases where they are used to verify
if code conforms to specification, they must be tightly coupled
with the development workflow, a process that is both difficult and
time consuming [29]. Static analysis techniques equally fall short.
Approaches like symbolic execution can confirm the satisfiability
of specific execution traces [4], but beyond finding unreachable
code, these need to approaches require properties designed by
experts to connect low-level inferences about program execution
to the semantics of the specification. Another technique, points-to
analysis, can be used to track the flow of specific variables and
search for patterns in executed statements [27, 35], but again, these
require expert-designed properties to compare the statement-level
inferences to high-level expectations. The above pitfalls make these
types of static analyses unsuitable for a context in which the precise
execution of the program is less important than the values it returns.

In this paper, we propose a method of differential mutation anal-
ysis to investigate if NGACNIST is operating correctly, and we im-
plement it in the form of ProfessorX. At a high level, Profes-
sorX accepts a seed policy, and iteratively performs a series of
semantically-valid mutations; after each mutation, it compares the
access decisions made by NGACNIST to the access decisions of a sim-
plified policy engine model we implemented using logic program-
ming. We call this simplified model NGACTiny. Due to the structure
of logic programming languages, we can implement NGAC’s com-
plex set theory-based mathematical model in more direct syntax.
Our NGACTiny implementation is less than 100 lines of liberally
spaced and heavily commented code—in comparison to the 33,949
lines of code in the NIST implementation. This much smaller imple-
mentation size gives us a great deal of confidence in its correctness.

The key insight of our approach is that policy engine implemen-
tations that conform to the NGAC specification should agree on all
access decisions, and though there is only one well-known imple-
mentation of an NGAC-compatible policy engine (i.e., NGACNIST),
it can still be tested by comparing it against a more trusted imple-
mentation (i.e., NGACTiny).

Using ProfessorX, we discovered two discrepancies between
NGACNIST and NGACTiny. We call these association overwrite and scope
leakage. Both are novel, to the best of our knowledge. Association
overwrite allows certain new policy changes to overwrite previ-
ously committed policy elements. This can allow an adversary to
deny access to resources explicitly allowed in a policy. Scope leak-
age, on the other hand, causes access rights to be granted to peers
outside the scope defined in the NGAC specification [17]. Our detec-
tion of both of these novel vulnerabilities suggests that ProfessorX
can be useful for discovering silent failures in implementations of
policy engine specifications.

Contributions.We make the following contributions:

(1) We model a simplified NGAC policy engine as a logic pro-
gram, which can be more easily reasoned about than the
full-scale reference implementation.

(2) We built ProfessorX, a differential mutation analysis frame-
work to test the NIST implementation against our simplified
model. Using this framework, we were able to uncover two
vulnerabilities. We make our implementation open source
for the benefit of the community1.

(3) We show that ProfessorX can be used to quickly detect
implementation deviations from the NGAC specification,
and could be a useful addition to a developer workflow.

Ethics. We disclosed our findings to NIST and were assigned
CVE-2025-31507.

2 NGAC Background

NIST developed the NGAC standard to meet the demands of glob-
ally distributed and interconnected business enterprises [19]. The
structure of NGAC is based on both the attribute-based access con-
trol (ABAC) and role-based access control (RBAC) models. NGAC’s
structure allows it to use node characteristics and properties to
define and manage access control policies [11].

2.1 NGAC Model

Access control is essential for all enterprises that wish to protect
sensitive information or hardware. An enterprise may be a busi-
ness, university, government, or other organization interested in
protecting resources it owns. The details of resource protection
are governed by the security policies (𝑃 ) that make explicit who is
able to access what resource. We call the person who defines the
policy a policy administrator. NGAC demarcates a number of differ-
ent policy elements and relationships that can be used as building
blocks to formulate arbitrarily complex policies. We discuss the
policy elements and relationships in turn.

2.1.1 Policy Elements. The basic data elements of an NGAC policy
include users, processes, user attributes, objects, object attributes,
policy classes, operations, and access rights. The combined set of
users, user attributes, objects, object attributes, and policy classes
form the set of policy elements (𝑃𝐸). In NGAC, the sensitive re-
sources are called objects (𝑂), while the entities who want to access
those resources are called users (𝑈 ). However, only processes (𝑃𝑟𝑜𝑐)
can actually access resources; the system is designed such that
authenticated users must initiate access requests through a pro-
cess that accesses the object on the user’s behalf. Both users and
objects can be tagged with any number of attributes—these are
called user attributes (𝑈𝐴) and object attributes (𝑂𝐴), respectively.
The semantics of an attribute can be decided at the discretion of
the policy administrator; either type of attribute could represent,
e.g., clearance levels, geographic locations, and organization de-
partments. Notably, NGAC regards the set of objects as a subset of
the object attributes, 𝑂 ⊆ 𝑂𝐴, though the same does not apply to
users and user attributes, 𝑈 ⊈ 𝑈𝐴. The affiliation of certain users,
user attributes, and object attributes with a policy is denoted as a
policy class (𝑃𝐶). There can be multiple policy classes in an NGAC
policy and policy elements can be part of multiple policy classes. A
policy administrator can define a set of access access rights (𝐴𝑅) in
a given policy and one or more access rights are required to execute
an operation (𝑂𝑝).
1https://doi.org/10.5281/zenodo.15388891

https://doi.org/10.5281/zenodo.15388891


ProfessorX: Detecting Silent Vulnerabilities in Policy Engine Implementations SACMAT ’25, July 8–10, 2025, Stony Brook, NY, USA

u3 u2

Division

Group2

Projects

Class

p1

Project1 Project2Group1

u1 o1 o2 o3

p2

Users Objects

User-side Object-side

p2

Association
Prohibition

Figure 1: An example policy graph DAG. This example in-

cludes some illustrative groupings of both users (in the form

of divisions and groups), and objects (in the form of hierar-

chical projects). In this example, the user attribute “Division”

is granted access right 𝑝2 to object attribute “Projects”.

2.1.2 Relations. NGAC defines the types of relationships that can
exist between policy elements. The types of relations are assign-
ments, associations, prohibitions, and obligations (see Appendix C).

Policy Graph. In NGAC, policy administrators create represen-
tations of organizational structures including personnel, sensitive
resources, and groupings of both. The codified organizational struc-
ture comprises a policy graph, which is a directed acyclic graph
(DAG) connecting policy elements. An example policy graph can
be seen in Figure 1, and is generally visualized as an upside-down
𝑛-ary tree, by convention. All policy elements constitute the policy
element set 𝑃𝐸, i.e., 𝑃𝐸 = 𝑈 ∪ 𝑈𝐴 ∪ 𝑂𝐴 ∪ 𝑃𝐶 , where each of 𝑈 ,
𝑈𝐴, 𝑂 , 𝑂𝐴, and 𝑃𝐶 is a finite set of its respective type of policy
element. Additionally, 𝐴𝑇 is a finite set of all attributes, i.e., all user
attributes and all object attributes, 𝐴𝑇 = 𝑈𝐴 ∪𝑂𝐴.

Assignments. Directed edges between pairs of nodes in the policy
DAG are called assignments. An assignment relation between two
policy elements 𝑥 and 𝑦, denoted as (𝑥,𝑦) ∈ 𝐴𝑆𝑆𝐼𝐺𝑁 , represents a
directed edge that originates at 𝑥 and terminates at 𝑦. When there
is a path through the DAG from policy element 𝑥 to 𝑦, we say
(in alignment with the NGAC specification) that 𝑥 is “contained
by” 𝑦, and denote this notationally as 𝑥 ⇝ 𝑦. Specific constraints
define which policy elements types can be assigned to each other.
The specific constraints are represented formally as: 𝐴𝑆𝑆𝐼𝐺𝑁 ⊆
(𝑈 ×𝑈𝐴) ∪ (𝑈𝐴 ×𝑈𝐴) ∪ (𝑂𝐴 ×𝑂𝐴) ∪ (𝑈𝐴 × 𝑃𝐶) ∪ (𝑂𝐴 × 𝑃𝐶).

Associations. Policy administrators grant users privileges to ac-
cess objects through associations, which are the downward blue
arcs in Figure 1. Each policy class has a set of ternary relations
(𝑢𝑎, 𝑎𝑟𝑠, 𝑎𝑡) ∈ 𝐴𝑆𝑆𝑂𝐶𝐼𝐴𝑇 𝐼𝑂𝑁 , for 𝑢𝑎 ∈ 𝑈𝐴, 𝑎𝑟𝑠 ⊆ 𝐴𝑅, and
𝑎𝑡 ∈ 𝐴𝑇 . The association applies to all users and user attributes
contained by 𝑢𝑎, 𝑢 ⇝ 𝑢𝑎 ∪ 𝑢𝑎′ ⇝ 𝑢𝑎, as well as all attributes
contained by 𝑎𝑡 , 𝑢𝑎′ ⇝ 𝑎𝑡 ∪ 𝑜𝑎⇝ 𝑎𝑡 ∪ 𝑜 ⇝ 𝑎𝑡 , for 𝑜 ∈ 𝑂 .

Prohibitions. Policy administrators explicitly deny users access
to objects through prohibitions; these are represented as the upward
red arcs in Figure 1. Prohibitions must be provided as input both
an inclusion set of policy elements, 𝑎𝑡𝑖 ∈ 𝑃𝐸\𝑃𝐶 , and an exclusion

set of policy elements, 𝑎𝑡𝑒 ∈ 𝑃𝐸\𝑃𝐶 . Additionally, they can be both
disjunctive or conjunctive. A disjunctive inclusion set defines the
attributes for which a request will be denied if any are the target
of the access request, 𝑎𝑡 ∈ 𝑎𝑡𝑖 . A disjunctive exclusion set defines
the attributes for which an access request will be denied if the
attribute is not contained by at least one element in the exclusion
set. Conversely, a prohibition can be conjunctive. In this case, a
conjunctive inclusion set defines the attributes for which a request
will be denied if the target is contained by all elements of the set,
𝑎𝑡 ∈ 𝑎𝑡𝑖 . A conjunctive exclusion set defines the the attributes
for which an access request will be denied if the attribute is not
contained by all attributes the exclusion set.

Decisions. All of the above policy components play a role in the
outcome of the access request mediation. That is, ultimately, any
access request must be sent to some endpoint that is capable of
boiling the above components down into a single decision. We
model this endpoint as the function decision(𝑢, 𝑎𝑟, 𝑎𝑡) for user 𝑢,
access right 𝑎𝑟 , and attribute being accessed 𝑎𝑡 .

2.1.3 NIST Reference Implementation NGACNIST. The reference im-
plementation NGACNIST is written in Java and has 33,949 lines of
code, with four main packages and 455 unit tests, as of the latest
version. The policy information stored internally is compiled from
policy statements written in Policy Machine Language (PML) [36].
PML is a domain-specific language for defining policies accepted by
NGACNIST. It includes provisions for defining access rights, creating
policy elements, and building relations between policy elements.
Each of these has a regular syntax. Sample policies are included in
our open sourced implementation. Since the first release in 2019,
NGACNIST has been under active development, with the latest ver-
sion released in 2024.

2.2 Related Work

Differential testing is widely used in discovering semantic bugs
that cause deviations from high-level specifications in software
implementations. They have been used for discovering evasion
vulnerabilities in email systems [38], testing the fork-handling be-
havior in blockchain implementations [28], and SSL/TLS certificate
validation [14]. However, the above approaches are limited to spe-
cific domains, none of which include NGAC policy mediation or
policy engines, in general.

Petsios et al. [32] designed Nezha as a domain-independent,
input format-agnostic, differential testing framework. While this
could, in theory, be applied to NGAC, it would not be effective in
practice. This is because they require either instrumentation into
the codebase—a difficult hurdle for large projects—or they diverse
program outputs to guide their inputs—which NGAC does not have
(it only outputs a binary allow or deny).

In addition, none of the above projects consider inputs with more
complex semantics. An NGAC policy may look like a DAG, but it
has constraints that mean it cannot be arbitrarily modified and still
be assumed to be valid input. This semantically valid input format
is something that Petsios et al. [32] cannot detect.

ProfessorX uses mutation analysis to generate valid inputs for
testing. Chen et al. [12] also used mutation analysis in a project on
NGAC policies, however they used mutations to detect errors in the



SACMAT ’25, July 8–10, 2025, Stony Brook, NY, USA Ben Weintraub, Chanyuan Liu, William Enck, and Cristina Nita-Rotaru

policy. Mutation analysis, however, has been around since at least
1980 [9], so our main novelty with regards to mutation analysis
is to apply it to NGAC policies. Further novelty in ProfessorX
comes from the application of mutation analysis to differential
testing—especially in the context of NGAC policy engines.

3 NGAC Modeling

The flexibility of NGAC is a double-edged sword; it simultane-
ously makes NGAC suitable as a model for many organizational
structures and arrangements, while at the same time demanding
a lengthy specification to (119 pages) to cover all edge cases, and
commensurately complex implementations.

Our goal in modeling NGAC is to establish a more limited scope
for what types of policies and access requests a policy engine needs
to provide mediation for. The reason for this is that due to the poten-
tial complexity allowed in NGAC policies, the proper functioning
of a policy engine implementation can be difficult to reason about.
The NIST reference implementation NGACNIST is a large project and
contains many program constructs that allow for modular design
and efficient decision making, but come at the cost of a system
whose behaviors may be difficult to understand. Our simplified pol-
icy engine implementation NGACTiny that we describe in Section 3.4,
is much less likely to contain bugs or deviations from the specifi-
cation, because it is much smaller in scope (less than 100 lines of
code), and therefore easier to reason about. Note that performance
of NGACTiny is a non-goal, and as NGACTiny is written in Prolog, it
has significant overhead that is not strictly necessary for a system
trying to optimize for speed.

3.1 NGAC Scope

We start from the premise that NGACTiny’s interface for mediat-
ing access requests must be similar to the interface for NGACNIST.
Namely, NGACTiny must accept access requests in the form of a triple
containing the user, access right, and object. It should then process
the request in accordance with the rules of NGAC and the installed
policy, and output an access decision, i.e., grant or deny.

NGACTiny reduces the scope of the policy engine by limiting four
NGAC constructs. First, in NGACTiny we do not include the pro-
cess and operation policy components; this is consistent with prior
work [19], which states that the core computation of the NGAC
framework is to adjudicate the relationships between users, objects,
and access rights. Second, we greatly simplify the prohibition func-
tionality in our model. In particular, we model only disjunctive
prohibitions, because modeling conjunctive prohibitions quickly
increases the complexity of our modeling—thus sacrificing the sim-
plicity that makes our model valuable. We also assume a default
exclusion set which includes all policy classes. The implications of
this are that when an object attribute is specified as the target of
the prohibition, that element (and anything contained by it) is the
only element to be prohibited. Again, this is useful for reasoning
about results and outputs. That said, there is no technical reason
why it would not be possible to model prohibitions in their entirety.

3.2 Threat Model

The NGAC-compatible policy engine is at the core of the functional
security security architecture, as shown in Figure 7. Any and all

access requests to resources are mediated by the this policy engine.
Any bugs in the implementation of the policy engine can lead to
unauthorized access to resources or denial of access to legitimate
users.

The goal of our adversary is to access sensitive resources that
they have not been granted privilege to access, or to block an-
other user from accessing resources that they should have access
to. The adversary could be anyone with access to a device within
the perimeter of the organization. This could include a member of
the organization who is trying to access resources beyond their
mandate, or an external adversary who has gained control of a
system via social engineering or the exploitation of vulnerabilities.

We assume the adversary can only use the authenticated identity
corresponding to the device they are operating from; they cannot
spoof any other identities and they cannot move laterally to any
device that has a different identity. All of the adversary’s access
requests must be done using this authenticated identity. The adver-
sary can change or influence the organization’s NGAC policy, but
any attempt to do so may be detectable if it is too blatant. Therefore,
the adversary will want to act surreptitiously.

3.3 Modeling NGAC Policies

NGAC has a long and complex specification. In addition to textual
descriptions of the model, the specification also includes detailed
set syntax describing the elements of a policy and how decisions
should be made. From this perspective, the access request mediation
process can be viewed as a sequence of set unions and intersec-
tions on both the information defined in the policy, as well as the
information provided in the request.

This structure lends itself to logic programming, which includes
natural syntax for reasoning about set logic. We select the logic pro-
gramming language Prolog as it has been used in many prior works
to model access control [13, 15, 22, 23, 34]. In this logic program-
ming model, we define a policy as a set of Prolog facts. For facts
representing policy elements, we use “name” to represent the label
of each respective policy element. These policy elements are: users
u(name), user attributes ua(name), objects o(name), object attributes
oa(name), policy classes pc(name), and access rights ar(name).

For the NGAC relations, we model these as 𝑛-arity facts. In
the following we show interface of these facts for assignments,
associations, and disjunctive prohibitions, respectively.

assign(username, user_attribute).
association(user_attribute, object_attribute,

[permission_type]).
disjunctiveProhibition(user, [object_attribute],

[permission_type]).

3.4 Implementing NGACTiny
We build NGACTiny out of a series of Prolog rules. A rule is a Horn
Clause that represents a logical relationship between facts. Ulti-
mately, our Prolog modeling results in a decision rule that we can
use to evaluate access decisions in ProfessorX. However, this de-
cision rule is built from smaller components. Below we present
snippets of NGACTiny, the full implementation can be viewed in
Appendix D.



ProfessorX: Detecting Silent Vulnerabilities in Policy Engine Implementations SACMAT ’25, July 8–10, 2025, Stony Brook, NY, USA

Assignments. To check that an assignment exists and is legal,
according to the NGAC specification, we use the following Prolog
rule. This rule both checks that an assignment exists from 𝑋 to
𝑌 and that the assignment is between one of the allowed pairs of
policy element types.

legalAssignment(X, Y) :-
assign(X, Y),
((u(X), ua(Y)); (ua(X), ua(Y));
(o(X), oa(Y)); (oa(X), oa(Y))).

Containment. For implementing the “contained by” relation, we
wrote a rule to perform a depth-first search. This rule says that 𝑋
is contained by 𝑌 if (1) 𝑋 and 𝑌 are the same element, (2) there is
an assignment from 𝑋 to 𝑌 , or (3) there is an assignment from 𝑋 to
𝑍 with 𝑍 being contained by 𝑌 .

Associations. Our association rule checks that both an association
fact exists in the policy between policy elements that can legally be
associated to each other, and that the access rights being granted
have been defined for the policy.
legalAssociation(UA, OA, ARS) :-

association(UA, OA, ARS),
((ua(UA), ua(OA), legalAccessRights(ARS));
(ua(UA), oa(OA), legalAccessRights(ARS));
(ua(UA), o(OA), legalAccessRights(ARS))).

Prohibitions. Our implementation only includes disjunctive pro-
hibitions. For this reason, we need to check that (1) a disjunctive
prohibition fact is defined in the policy along with the reference
access rights, (2) the target of the prohibition is one of the policy
elements allowed to be prohibited, (3) the user who is accessing the
target attribute is contained by the user attribute defined in the pro-
hibition, and (4) the target attribute is in the inclusion set—the set
of object attributes whose access is prohibited—or that the attribute
is contained by an attribute in the inclusion set.
disjProhibited(U, AT, AR) :-

disjunctiveProhibition(U_or_UA, ATI, ARS),
legalAccessRights(ARS), member(AR, ARS),
(ua(AT); oa(AT); o(AT)),
isContained(U, U_or_UA),
inInclusionSet(AT, ATI).

Decisions. We define a decision rule that checks if a user has
explicitly been granted the right to access the target policy element,
and that no prohibition has been defined precluding such access.
The negation operator in Prolog is \+.
decideAll(U, PE, AR) :-

legalAssociation(UA, PE_Parent, ARS),
member(AR, ARS),
isContained(U, UA),
isContained(PE, PE_Parent),
\+ (isContained(PE, PE_Prohib),

disjProhibited(U, PE_Prohib, AR)).

4 Policy Engine Validation

We describe ProfessorX, our system for finding access decision dif-
ferences between the NIST implementation NGACNIST of the NGAC-
compatible policy engine and our simplified policy engine NGACTiny.

Differential Tester

NGACNIST(P, Req) ⇒ DNIST

NGACTiny(P, Req) ⇒ DTiny

Access 
Request 

Generator
P

DNIST ≠ DTiny Alert

DNIST = DTiny

Pseed

Policy Mutator Pmutant

Pcurrent

Req

Figure 2: ProfessorX data flow pipeline. Policies are fed into

the Access Request Generator module that sends generated

requests to the policy engines. The Differential Tester com-

pares DNIST and DTiny which represent the set of decisions

made by NGACNIST and NGACTiny, respectively. If an alert is not

generated, the policy is mutated and the process restarts.

4.1 Overview

ProfessorX is designed to assess how closely NGACNIST follows
the NGAC specification. In particular, we aim to detect any be-
havioral deviations from the specification. The process starts by
feeding a manually created seed policy 𝑃𝑠𝑒𝑒𝑑 into the Access Re-
quest Generator (ARG) and the Differential Tester module which
will forward the policy to the NGACTiny and NGACNIST policy engines.
The ARG builds a set of access requests 𝑅𝑒𝑞 based on the users,
access rights, and accessible objects defined in the policy. Like the
seed policy, the access requests are fed into the Differential Tester,
in which the policy engines output their decisions based on their
respective decisionTiny (𝑢, 𝑎𝑟, 𝑎𝑡) and decisionNIST (𝑢, 𝑎𝑟, 𝑎𝑡) pro-
cedures. The Differential Tester then determines if there is a dis-
agreement about whether the access request should be allowed
or denied. If there is a discrepancy, then the Differential Tester
generates an alert. Otherwise, the policy is fed into the Policy Mu-
tator module. This module creates a single change in the policy by
adding exactly one policy element or relation; this results in a new
policy 𝑃𝑚𝑢𝑡𝑎𝑛𝑡 . The process then begins again in a new round with
𝑃𝑚𝑢𝑡𝑎𝑛𝑡 being fed into the policy engines and the ARG module in
the place of 𝑃𝑠𝑒𝑒𝑑 and continues until either a discrepancy is found
or the predetermined maximum number of rounds 𝑅𝑚𝑎𝑥 is reached.
A diagram of ProfessorX’s operation can be viewed in Figure 2.

4.2 ProfessorX

At its core, ProfessorX compares the outcome of access requests
in NGACNIST to the same access requests in NGACTiny. In this context,
there are two major considerations to make. First, what policy
should be used when comparing the two models? And second,
which access requests should be tested?

4.2.1 Input Policies. The policies that are fed into the respective
policy engines are essential to the proper functioning of Profes-
sorX. A naïve approach might input randomly generated policies.
However, this approach is subject to two pitfalls. The first is that if a
policy is structurally invalid then we are unlikely to find discrepan-
cies between the two models, because simple software development
safeguards like type-checking are likely to catch these. The sec-
ond reason is that if policies are unrealistic, it is not clear how
meaningful detected discrepancies are.

For these reasons we take a two-pronged approach to generating
input policies. We start by manually creating a seed policy. We
can ensure this structure is well-formed, meaning it has a top-level
policy class with object and user attributes above it, and objects and



SACMAT ’25, July 8–10, 2025, Stony Brook, NY, USA Ben Weintraub, Chanyuan Liu, William Enck, and Cristina Nita-Rotaru

users, respectively, above the attributes. In addition, it can contain
some associations and prohibitions.

The second prong in our approach answers the question of how
to leverage a valid seed policy to generate more valid test policies.
Our solution uses mutation analysis. We start with a valid policy,
then create one atomic, semantically valid mutation, then pass that
back to the respective policy engines to restart our differential
testing. We discuss the details of mutations more in Section 4.2.4.

4.2.2 Differential Testing. Testing a policy involves generating
a series of access requests, and sending those to the respective
NGACTiny and NGACNIST models. The composition of the set of pos-
sible access requests depends on the policy being tested. It only
makes sense to check if a user 𝑢 can perform access right 𝑎𝑟 on
object 𝑜 , if all three of 𝑢, 𝑎𝑟 , and 𝑜 are defined within the policy
being tested. However, even given this, it is not obvious which
of the possible access requests is most likely to uncover a dis-
crepancy between the models. For this reason, we opt to exe-
cute all possible access requests that can be made for a given pol-
icy. This means that for a policy 𝑃 that includes users 𝑈 , access
rights 𝐴𝑅, and accessible attributes 𝐴𝑇 , we perform the follow-
ing: 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁𝐼𝑆𝑇 (𝑢, 𝑎𝑟, 𝑎𝑡) ∧ 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑖𝑛𝑦 (𝑢, 𝑎𝑟, 𝑎𝑡) where ∀𝑢 ∈
𝑈 ,∀𝑎𝑟 ∈ 𝐴𝑅,∀𝑎𝑡 ∈ 𝐴𝑇 .

The implication of this is that we are able to ignore any bugs that
may exist in NGACNIST, unless it has a direct, observable impact on
an access request mediation outcome. This again makes our testing
procedure more practical than other analysis techniques.

4.2.3 Cyclic Testing and Alerts. While performing differential test-
ing on a single policy has value, it does not take full advantage of the
explorationmade possible by our policy mutations. Additionally, for
a single policy, we are testing all possible access requests, so there
is nothing to be gained by performing a differential test more than
once. For these reasons, we perform our tests cyclically. Every time
we evaluate decisionTiny (𝑢, 𝑎𝑟, 𝑎𝑡) vs. decisionNIST (𝑢, 𝑎𝑟, 𝑎𝑡), we
can expect one of two outcomes. Either the two decisions will be
the same (i.e., both allow or both deny), or they will be different.
If they are different, we generate an alert and halt the program. If
they are the same, then make a mutation to the policy, load the mu-
tated policy into both the policy engines, and restart the differential
testing. The reason we stop after a discrepancy occurs is that not
only will we continue to see that same issue flagged repeatedly, but
also we will see new discrepancies flagged that have the same root
cause but are simply built on the policy elements involved in the
previously detected discrepancy. We bound the number of rounds
we will perform before stopping at 𝑅𝑚𝑎𝑥 .

4.2.4 Mutations. Two key principles guide our mutations: (1) the
mutated policy must be syntactically valid, and (2) the mutated
policy must be semantically different from the pre-mutation policy.

Syntactically-valid Mutations. ProfessorX is designed to explic-
itly avoid detecting fail-stop faults. Our goal is instead to generate
well-formed inputs that result in well-formed outputs. Therefore, it
is not suitable to add or remove nodes and edges at random. This
could result in policies that are syntactically invalid and would not
be processed by either policy engine. For this reason, we place par-
ticular emphasis on generating NGAC policies that are syntactically
valid, i.e., the guiding constraints of NGAC policies are observed.

We find that enforcing a single constraint can be used to ensure
that generated policies are semantically-valid. The constraint is
that the mutation must not create a cycle in the DAG. If we detect
that a cycle would be created, we discard that mutation and select
another. Concretely, this constraint is enforced by checking if a
node 𝑥 is already contained by another node 𝑦, and if it is, we do
not add an assignment (𝑥,𝑦) ∈ 𝐴𝑆𝑆𝐼𝐺𝑁 , which would create a
cycle. Since the “contained by” relation is transitive, this naturally
avoids transitive cycles, e.g., 𝑥 ⇝ 𝑦 ∧ 𝑧 ⇝ 𝑥 ∧ 𝑦 ⇝ 𝑧.

Semantically-aware Mutations. We also require mutations to be
semantically aware to ensure we do not test the same policy mul-
tiple times. For example, assigning a user or an attribute element
to its affiliated policy class does not change the policy engine’s
behavior—we avoid such changes.

Our mutations are informed by the NGAC specification, which
defines administrative commands describing ways in which a policy
can be modified [19]. We can use these administrative commands
to guide our mutation process. Table 1 lists the valid types of muta-
tions implemented in our approach. The mutations listed in Table 1
are a subset of the administrative commands defined in the NGAC
specification. For the mutations that add new policy elements, we
also must add a corresponding assignment otherwise the new el-
ement will be disconnected from the graph and not impact the
effective policy at all. Incremental mutations also help us guaran-
tee the mutated policy is semantically different from the previous
policies. A policy, as described in Section 2.1, consists of policy
elements and relations. If we mutate the set of policy elements or
relations following the pre-conditions required by the mutation,
we can be sure that the post-mutation policy is valid.

Note that we model only additive mutations. This is because
removing nodes from the policy graph could disconnect the graph,
and while reconnecting the graph is an option, it would invite new
questions as to where to reconnect.

Selecting Mutations. In Table 1, we established the corpus of
mutations that we consider. However, each round we only perform
one mutation from the list, and so we must define a decision process
for selecting mutations. This is a problem similar to guidance in
fuzzing, where program inputs are guided by developer-chosen
metrics that might lead towards more interesting program states.
However, it is not obvious what types of program states might lead
to a policy mediation being incorrect, so the lessons of fuzzing
guidance do not prove useful here. As a result, we opt to select
mutations randomly from the list. Our selection process works as
follows. First, we select one of the four classes of mutations: adding
a node, adding an association, adding an assignment, and adding a
prohibition. If the random selection results in adding a node, we
further randomly select the type of node, such as user, object, or
attribute. We also need to reconnect the node with the graph with
an assignment. To do this, we randomly select a viable end point, i.e.,
only elements that can legally contain the newly created element.
If an assignment, association or prohibition is to be added, then
we select, in a similar fashion, viable endpoints. We also randomly
select an access right from the set defined for the policy; this is the
access right that will be allowed or denied.



ProfessorX: Detecting Silent Vulnerabilities in Policy Engine Implementations SACMAT ’25, July 8–10, 2025, Stony Brook, NY, USA

Table 1: Valid types of mutations implemented in our policy engine fuzzing process. ID is the item identifier in the policy.

Mutation Description

CreateUinUA(x:ID,y:ID) Add policy element Add user x to the policy representation and assign it to user attribute y

CreateUAinUA(x:ID,y:ID) Add policy element Add user attribute x and assign it to user attribute y

CreateUAinPC(x:ID,y:ID) Add policy element Add user attribute x and assign it to policy class y
CreateOinOA(x:ID,y:ID) Add policy element Add object x and assign it to object attribute y

CreateOAinOA(x:ID,y:ID) Add policy element Add object attribute x and assign it to object attribute y

CreateOAinPC(x:ID,y:ID) Add policy element Add object attribute x and assign it to policy class y
CreateUserProhib(w:ID,x:ID,y:ID) Add relation Add prohibition restricting user x from resource z with access right y
CreateAssoc(x:ID;y:ID;z:ID) Add relation Add association allowing user x access to resource z with access right y

Algorithm 1: Differential mutation analysis algorithm
Input: 𝑃 : seed policy, 𝑅𝑚𝑎𝑥 : max rounds
Output: true ∪ false

1 𝑅𝑒𝑞 ← 𝐺𝑒𝑛𝑅𝑒𝑞(𝑃) // generate exhaustive access requests
2 𝑖 ← 0 // iteration counter
3 while 𝑖 < 𝑅𝑚𝑎𝑥 do

4 while All 𝑟 ∈ 𝑅𝑒𝑞 not processed do

5 𝐷𝑁𝐼𝑆𝑇 ← 𝑁𝐺𝐴𝐶𝑁𝐼𝑆𝑇 (𝑃, 𝑟 )
6 𝐷𝑇𝑖𝑛𝑦 ← 𝑁𝐺𝐴𝐶𝑇𝑖𝑛𝑦 (𝑃, 𝑟 )
7 𝐿𝑜𝑔(𝑃, 𝐷𝑁𝐼𝑆𝑇 , 𝐷𝑇𝑖𝑛𝑦, 𝑟 )
8 if 𝐷𝑁𝐼𝑆𝑇 ≠ 𝐷𝑇𝑖𝑛𝑦 then

9 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐴𝑙𝑒𝑟𝑡 (𝑟 )
10 return true

11 end

12 end

13 𝑃 ← 𝑀𝑢𝑡𝑎𝑡𝑒 (𝑃)
14 Increment 𝑖
15 end

16 return false

4.2.5 Seed Policies. The first step in a run of ProfessorX is to
initialize it with a seed policy. The main factor we consider when
creating a seed policy is the total number of policy elements. We use
the total number of policy elements as a proxy for the complexity
of the policy. A more complex policy indicates more reliance on the
policy engine’s ability to mediate access decisions. By starting with
a complex policy, we can guarantee that all runs will start with a
minimum complexity. In addition, since we manually created the
policy, we can ensure that it has a structure such as could be found
in an enterprise setting. Conversely, a simple policy with fewer
elements can be useful as a trusted starting point from which we
can let the Policy Mutator build a variety of different structures.

4.3 Differential Mutation Analysis Algorithm

We present the algorithm used in ProfessorX for comparing the
decisions of NGACNIST and NGACTiny starting with a seed policy (see
Section 4.2.5) and executing a series of mutations on the seed policy
to find discrepancies between the two policy engines.

Algorithm 1 shows the pseudocode of our approach, where the
input 𝑃 is the seed policy and 𝑅𝑚𝑎𝑥 is the maximum number of
rounds. First, the algorithm generates an exhaustive set of access

requests 𝑅𝑒𝑞 based on 𝑃 using 𝐺𝑒𝑛𝑅𝑒𝑞 (line 1). 𝐺𝑒𝑛𝑅𝑒𝑞 calculates
the cross-product of all possible users (and user attributes), objects
(and object attributes), and access rights. The intuition behind this
is that each access request 𝑟 ∈ 𝑅𝑒𝑞 may be impacted differently
by a mutation—something we cannot easily predict. By evaluating
every possible 𝑟 , we cover the entire space of decisions that could
be impacted by any given mutation. For evaluating an access re-
quest 𝑟 on policy 𝑃 , we write 𝑁𝐺𝐴𝐶𝑥 (𝑃, 𝑟 ), where 𝑥 indicates the
policy engine model used. The algorithm iterates over all access
requests 𝑟 ∈ 𝑅𝑒𝑞 (line 4), querying each policy engine for access
decisions (lines 5-6), and comparing the decisions𝐷𝑁𝐼𝑆𝑇 and𝐷𝑇𝑖𝑛𝑦

of NGACNIST and NGACTiny, respectively (line 7). If 𝐷𝑁𝐼𝑆𝑇 ≠ 𝐷𝑇𝑖𝑛𝑦 ,
an alert is generated by 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐴𝑙𝑒𝑟𝑡 function, the discrepancy
is logged, and the algorithm returns true (lines 8-10). If there is
no discrepancy, we mutate the policy 𝑃 according to the rules in
Table 1 (line 14) and then start back at the beginning of the loop
(line 3) unless the maximum number of rounds 𝑅𝑚𝑎𝑥 is surpassed.

4.4 Implementation

As discussed in Section 3.4, our policy engine model NGACTiny was
implemented in Prolog. The rest of ProfessorX, however, is imple-
mented in Java. Java was selected because it is the language that
NGACNIST is written in, so using the same language made interfacing
between the two much easier. However, to interface with NGACTiny,
we relied on a library called JPL [37], which provides bindings for
Java programs to use and reference Prolog facts and rules.

Policy Representation. Not only are the two policy engines NGACTiny
and NGACNIST written in different languages, but the policies that
they can accept as inputs are also written in different languages.
For NGACTiny, the policies must be written in Prolog; for NGACNIST,
they are written in PML. To ease implementation, we created a
unified representation of the each policy in the form of a graph
using JGraphT [31], a Java library that provides utilities for graph
manipulation and analysis. This graph representation is critical for
our ability to perform principled mutations on the policies.

Mapping Graph-based Policies to Prolog and PML Policies. While a
graph representation is useful for mutations, eventually themutated
policies need to be reloaded into the respective policy engines. To
satisfy the input requirements of the policy engines, we perform a
breadth-first search of the policy graph, and for each policy element
and relation we encounter, we convert that into both Prolog facts
and PML statements. This ensures that the two policy engines
receive the same policy in their native languages. Similarly, when



SACMAT ’25, July 8–10, 2025, Stony Brook, NY, USA Ben Weintraub, Chanyuan Liu, William Enck, and Cristina Nita-Rotaru

we modify the graph, by remapping the new graph into PML and
Prolog facts, the two updated files also represent the same policy
design. As we do not model obligations or the more expansive
definition of prohibition, the transpilation process can use simple
string interpolation on standard policy element templates.

There is one challenge associated with this strategy, however.
Namely, in PML, policy elements are processed sequentially, and
therefore the order policy elements are declared in matters. Specif-
ically, any policy element referenced in a policy relation must al-
ready have been defined. For instance, NGACNIST will not accept
an assignment between non-existing attributes—even if they are
defined later in the same policy. As a result of this, when transpiling
the policy graph to PML, we adopt a topological sort algorithm to
ensure the order of creating policy elements is correct.

4.4.1 Seed Policies. Wemanually created two types of seed policies,
simple and complex—each with their own benefits.

Simple Seed Policy. This policy contains very few policy elements,
with only two users, two user attributes, one object, one object at-
tribute, two associations, and one prohibition as shown in Figure 3a.
The purpose of this policy is to serve as a starting point to add
mutations to and to simplify reasoning in case a discrepancy arises.

Complex Seed Policy. This policy increases the number of policy
elements versus the simple seed policy, and makes the number
of objects (six) much greater than the number of users (one). We
present a graphical representation of this policy in Appendix B
(Appendix B). The reason for the disparity between users an objects
is performance—it reduces the number of access requests that need
to be checked. We are generating all possible resource accesses,
which have a size equal to the size of the cross product between the
set of users and the set of resources that can be accessed,𝑈 ×𝐴𝑇 .
If both of these quantities increase linearly, then 𝑈 × 𝐴𝑇 grows
quadratically, but if only one increases, then the growth of the total
is only linear. By keeping the number of users at only one, we are
drastically reducing the number of access requests we need to test.
Policies like this are realistic, however. For example, Ferraiolo et al.
[16] suggest this type of policy can be used to model Brewer and
Nash’s “Chinese Wall” policy [8].

4.4.2 NGACNIST Version. Parts of this project started in 2022 stem-
ming from a previous work Anjum et al. [3]), and as a result, evalu-
ations began on a 2022 release of NGACNIST. We eventually migrated
our evaluations to the latest version of NGACNIST, from 2024. We
differentiate them by writing NGAC22NIST and NGAC24NIST for the old
and new versions, respectively. We present evaluations primarily
for NGAC24NIST, however we discuss in Section 5.4 discrepancies we
discovered using NGAC22NIST.

5 Evaluation

We evaluate ProfessorX on its effectiveness of detecting NGACNIST
deviations from the NGAC specification as well as on performance
metrics that have implications on the practicality of ProfessorX
for deployment in real development workflows. Concretely, we aim
to answer the following questions:

Q1 How effective is ProfessorX at detecting discrepancies be-
tween the NGACTiny and NGACNIST?

Q2 Is ProfessorX efficient enough to be used in a developer
workflow?

Q3 Do discrepancies uncovered by ProfessorX have meaning-
ful security implications?

We conducted our experiments on an Apple 2021 MacBook Pro
with an M1 Pro processor and 16GB RAM. ProfessorX was run
within a Ubuntu 20.04 Docker container on the host machine. For
each seed policy, we ran ProfessorX 1,000 times, and in each
run, ProfessorX mutated the seed policy 100 times—testing for
discrepancies between each mutation—until a discrepancy was
found or 100 rounds was reached.

5.1 Finding Discrepancies (Q1)

Out of 1,000 runs for each of the two seed policies for NGAC24NIST,
ProfessorX found discrepancies in 796 runs that started with the
simple seed policy and 567 runs for the complex seed policy. For
NGAC22NIST, out of 1,000 runs, 998 and 856 runs ended with discrep-
ancies for the simple seed policy and complex policy, respectively.
Underlying each discrepancy is a misunderstanding or incorrect
implementation of the NGAC standard. Upon triggering a discrep-
ancy, we cannot say as a matter of course which policy model,
NGACTiny or NGACNIST, is correct, and we perform manual analysis.
Our manual analyses of all these discrepancies could be traced to
two root causes—association overwrite and scope leakage.

For NGAC24NIST, all 796 runs that resulted in inconsistencies start-
ing from the simple seed policy triggered association overwrite—for
the complex seed policy, all 567 inconsistent runs also triggered the
association overwrite. For NGAC22NIST, among the 998 inconsistent
runs starting with simple seed policy, 235 runs triggered associa-
tion overwrite, and 763 runs triggered scope leakage. The complex
seed policy yielded 856 inconsistent runs with 755 runs triggering
association overwrite, and 101 runs triggering scope leakage.

Additionally, choosing a proper seed policy appears to be impor-
tant for finding discrepancies. Of our 1,000 runs starting with each
of the simple and complex seed policies on NGAC24NIST, we detected
discrepancies in 79.6% and 56.7% of the runs, respectively.

We cannot say for certain what factors make the best seed poli-
cies, but some notable differences between our two seed policies
that could have impacted the detection rate are: policy size or pol-
icy structure. In any case, if we assume a likelihood of detecting a
discrepancy to be as low as 50%, then there is a 99.9% probability
of detecting a discrepancy after only ten runs.

5.2 ProfessorX Performance (Q2)

We consider two relevant benchmarks: how long it takes to execute
a single mutation-decision round, and how long it takes to execute
enough rounds to make finding a discrepancy highly likely. An
understanding of these will give a notion of how much time a user
running ProfessorX can expect to experience.

The time it takes for ProfessorX to execute a single mutation-
execution round increases with the size of the policy. In Figure 4, we
see that the runtimes are increasing superlinearly with the number
of mutations. The likely cause is that every time we add a policy
element, we increase by 𝑛 the number of access requests that need
to be checked, where 𝑛 is the number of policy elements either
being accessed or doing the accessing.



ProfessorX: Detecting Silent Vulnerabilities in Policy Engine Implementations SACMAT ’25, July 8–10, 2025, Stony Brook, NY, USA

u1 u2 o1

ua1 ua2 oa1

Class

p2

p1

Association
Prohibition

p1

(a) Simple seed policy.

u1 u2 o1

ua1 ua2 oa1

Class

p2

p1

p1

(b) Example mutation: new assignment.

u1 u2 o1

ua1 ua2 oa1

Class

p1

p1

p2
p1

(c) Example mutation: new association.

Figure 3: Graphical representation of the simple seed policy and two mutated policies. New elements and relations are bolded.

(a) The simple seed policy. (b) A new assignment is added between 𝑢1 and 𝑢𝑎2. Results in scope leakage vulnerability. (c) A new

association relation is added from 𝑢𝑎2 to 𝑜𝑎1 with access right 𝑝1. Results in association overwrite vulnerability.

0 20 40 60 80 100
Number of mutations

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e 

du
ra

tio
n 

(s
)

Simple seed policy
Complex seed policy

Figure 4: Average duration per mutation round across 1,000

independent runs (100 mutations per run).

0 50 100 150 200
Duration of each run with 100 mutations (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

7.68s 14.57s

12.75s 25.28s

Simple seed policy
Complex seed policy
Mean (simple)
Mean (complex)
90th percentage (simple)
90th percentage (complex)

Figure 5: CDF of the cumulative duration of all mutations

for each run.

For the purpose of analyzing runtimes, we force ProfessorX
to execute all 100 rounds regardless of if it found a discrepancy
or not. From Figure 5, we see the average duration of these 1,000
runs starting with the simple seed policy was 7.68 seconds, and the
90th percentile runtime was 12.75 seconds. The maximum duration
taken by a single run is 65.19 seconds. For the complex seed policy,
the average was 14.57 seconds, the 90th percentile runtime was
25.28 seconds, and the maximum duration was 237.7 seconds.

These runtime numbers are well within reasonable bounds for
what a developer might expect in their pre-commit workflow. Run-
ning these types of tests alongside unit tests, or even alongside

10 20 30 40 50
Number of nodes in a policy

0.05

0.00

0.05

0.10

0.15

0.20

In
co

ns
is

te
nc

y 
ra

tio

Inconsistency ratio
Regression line

Figure 6: Ratio between access decision discrepancies and

total access requests as a function of the total number of

policy elements in our simple policy. Each point represents

a mutated policy that caused a discrepancy.

traditional fuzzing frameworks could be an effective way to reduce
the presence of hard-to-detect vulnerabilities.

5.3 Security Implications (Q3)

It is not immediately obvious what the scope of impact of a single
discrepancy might be. For instance, it could indicate that the un-
derlying vulnerability makes the entire set of decisions liable to be
incorrect. In Figure 6 we plot the ratio between resource accesses
that cause discrepancies and total resource accesses for policies of
varying sizes. We see a general trend towards lower inconsistency
ratios as policy sizes increase. This declining trend suggests that the
final mutation that causes an inconsistency is creating a number of
discrepancies that is increasing more slowly than the total number
of accesses, which is proportional to the total number of nodes.
From this we can infer that the created discrepancies are usually
localized within the policy graph and usually do not create wide
ranging effects. This suggests that while a single incorrect policy de-
cision is still problematic, the existence of a mistaken vulnerability
is not likely to have broad impact within a single policy.

5.4 Root Cause Analysis

Using ProfessorX, we discovered that all of the discrepancies we
detected between NGACTiny and NGACNIST were the result of two
root causes. We analyze each in this section.



SACMAT ’25, July 8–10, 2025, Stony Brook, NY, USA Ben Weintraub, Chanyuan Liu, William Enck, and Cristina Nita-Rotaru

Association Overwrite. The first vulnerability we discovered hap-
pens when adding a new association (𝑢𝑎, 𝑛𝑒𝑤𝐴𝑅, 𝑎𝑡) to a policy
containing an existing association (𝑢𝑎, 𝑜𝑙𝑑𝐴𝑅, 𝑎𝑡), where 𝑛𝑒𝑤𝐴𝑅 ≠

𝑜𝑙𝑑𝐴𝑅. Because the access rights are not equal, the new access
right 𝑛𝑒𝑤𝐴𝑅 should be added in addition to the old access rights
𝑜𝑙𝑑𝐴𝑅 [19, p. 46]. However, we see in NGAC24NIST that the new as-
sociation overwrites the existing one. We confirmed this in the
code where we observe that, they explicitly delete all associations
between policy elements when adding a new association between
those elements [36]. This is a direct violation of the NGAC specifi-
cation. The correct behavior would be to define an association with
the union of the access rights in 𝑛𝑒𝑤𝐴𝑅 and 𝑜𝑙𝑑𝐴𝑅.

Figure 3c shows the added association (𝑢𝑎2, 𝑝1, 𝑜𝑎1) that trig-
gers the discrepancy between NGACNIST and NGACTiny. The two
policy engines make different decisions on four access requests.
The implications of this vulnerability is that it is possible for an
adversary to create associations that block other associations from
being honored—this constitutes a denial of service attack. This is
especially counterintuitive because adding an association should
never reduce the scope of access for any user.

Scope Leakage. The second vulnerability we discovered occurs
when adding an assignment between two existing nodes, where one
of the nodes becomes contained by two unconnected nodes. This
vulnerability only applies to NGAC22NIST, and appears to have been
fixed in NGAC24NIST. We saw this, when the seed policy in Figure 3a
had the assignment relation (𝑢1, 𝑢𝑎2) added, which is highlighted
in bold in Figure 3b. This caused two access request discrepancies.

Manual analysis of the policy revealed that the user attribute𝑢𝑎1
should not have access 𝑝2 access on object 𝑜1, however NGAC22NIST
grants such an access. This vulnerability results from a variable
scoping bug. Policy remediation requires a tree traversal starting
at the subject who is performing the access. The engineers have
implemented a recursive breadth-first search traversal, and in each
recursive frame, they collect the objects that are accessible from the
node being visited along with permissions for that access—they call
these accessible objects, border targets [36]. In general, this approach
is fine for the remediation process, however, their implementation
stores these border targets as a variable that is included within a
closure function that gets called on every recursion. The scoping is
such that border targets persist once they have been collected, even
when returning up the recursive call stack to branch at a previous
ancestor. This results in granting permissions to users unrelated to
the collected border targets. The impact of this vulnerability is that
seemingly benign changes to the policy could cause some users to
gain unauthorized access.

6 Concluding Discussion

In this paper, we describe a methodology for policy engine differen-
tial mutation analysis, a system we implemented and evaluated in
the form of ProfessorX. Despite our findings that type of scheme
can find novel vulnerabilities in the form of silently incorrect policy
decisions, there are a number of open questions worth considering.

Correctness. ProfessorX offers the ability to find silently incor-
rect policy engine decisions, but it does not give any guarantees that
it will. So it is possible that vulnerabilities can exist in the system,

but may not be detected. There are two considerations on this point.
First, if the set of mutations is complete—meaning it models every
way a policy could change—then it is highly likely that an extant
vulnerability will eventually be found. Second, our implementation
of NGACTiny does not comewith any guarantees that it implemented
the NGAC standard correctly. However, the benefit of ProfessorX,
is that it actively compares end results between implementations.
In the case of a discrepancy, we first look into what the correct
outcome should have been according to the specification, and then
decide which of the models was incorrect. Thus our system leans
more on the comparison between the NGACTiny and NGACNIST than
rather than the objective correctness of NGACTiny. As a result, any
mis-implementation in either NGACTiny or NGACNIST is likely to be
caught. The caveat, is that if both implementations mis-implement
some component of the standard, then no discrepancies will arise
and the vulnerability will not be detected.

Realistic Seed Policies. It is de rigueur in security research to rely
on datasets that reflect real world implementations. Unfortunately,
we do not have access to any real enterprise’s security policies,
because the release of such a dataset would itself be a major secu-
rity issue for that enterprise. However, it appears likely that more
realistic seed policies do not necessarily make ProfessorX more
effective at finding discrepancies, as we detect them at the same
rate for both of the seed policies we based our testing on. On the
other hand, realistic policies may be much larger—potentially con-
taining tens of thousands of users and objects—this, we are certain,
would have a significant negative impact on ProfessorX runtime.
Therefore, smaller seed policies may be the best option.

Mutations. The ability of ProfessorX to catch discrepancies is
impacted by the set of mutations are available to be tested. For
example, during our development of ProfessorX, we did not catch
any association overwrite discrepancies until adding the CreateAs-

soc mutation. In retrospect, this is unsurprising, however that still
leaves us in the dark about whether there are further discrepancies
that remain to be uncovered if we only implement the right muta-
tions. Future work could address this by implementing all isolated
changes that could be made to a policy. In particular, instead of only
adding policy elements or relations, they could delete them. They
could also transform one relation into another. There are further
questions that would need to be answered to do so correctly, but
this is within the realm of possibility.

Usability. We conclude by suggesting that this would not be a
difficult tool to integrate into a development workflow. Many con-
tinuous integration tools provide hooks for running tests of all sorts,
so adding this via the same mechanisms would not be difficult.
This approach could also be generalized for other policy frame-
works, or extended to include new policy engine implementations.
Broader adoption could only enhance these applications which find
themselves so central to enterprise security.

Acknowledgements

This work was supported in part by ONR grant N00014-20-1-2696.
Any findings and opinions expressed in this material are those of
the authors and do not necessarily reflect the views of the funding
agencies.



ProfessorX: Detecting Silent Vulnerabilities in Policy Engine Implementations SACMAT ’25, July 8–10, 2025, Stony Brook, NY, USA

References

[1] 2023. https://github.com/coq/coq
[2] Iffat Anjum, Daniel Kostecki, Ethan Leba, Jessica Sokal, Rajit Bharambe, William

Enck, Cristina Nita-Rotaru, and Bradley Reaves. 2022. Removing the Reliance on
Perimeters for Security using Network Views. In Proceedings of the 27th ACM on
Symposium on Access Control Models and Technologies. ACM, New York NY USA,
151–162. doi:10.1145/3532105.3535029

[3] Iffat Anjum, Jessica Sokal, Hafiza Ramzah Rehman, Ben Weintraub, Ethan Leba,
William Enck, Cristina Nita-Rotaru, and Bradley Reaves. 2023. MSNetViews:
Geographically Distributed Management of Enterprise Network Security Policy.
In Proceedings of the 28th ACM Symposium on Access Control Models and Tech-
nologies (Trento, Italy) (SACMAT ’23). Association for Computing Machinery,
New York, NY, USA, 121–132. doi:10.1145/3589608.3593836

[4] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and
Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. ACM Comput.
Surv. 51, 3, Article 50 (2018).

[5] D Elliott Bell and Leonard J La Padula. 1976. Secure computer system: Unified
exposition and multics interpretation. (No Title) (1976).

[6] Matt Bishop. 2004. Introduction to computer security. Addison-Wesley Profes-
sional.

[7] Bruno Blanchet et al. 2016. Modeling and verifying security protocols with the
applied pi calculus and ProVerif. Foundations and Trends® in Privacy and Security
1, 1-2 (2016), 1–135.

[8] David FC Brewer and Michael J Nash. 1989. The Chinese Wall Security Policy..
In S&P. 206–214.

[9] Timothy Alan Budd. 1980. Mutation analysis of program test data. Yale University.
[10] Ramaswamy Chandramouli and Zack Butcher. 2023. A Zero Trust Architec-

ture Model for Access Control in Cloud-Native Applications in Multi-Location
Environments. doi:10.6028/NIST.SP.800-207A

[11] Ramaswamy Chandramouli, Zack Butcher, and Aradhna Chetal. 2021. Attribute-
based Access Control for Microservices-based Applications Using a Service Mesh.
doi:10.6028/NIST.SP.800-204B

[12] Erzhuo Chen, Vladislav Dubrovenski, and Dianxiang Xu. 2021. Mutation Analysis
of NGAC Policies. In Proceedings of the 26th ACM Symposium on Access Control
Models and Technologies (Virtual Event, Spain) (SACMAT ’21). Association for
Computing Machinery, New York, NY, USA, 71–82. doi:10.1145/3450569.3463563

[13] Hong Chen, Ninghui Li, and Ziqing Mao. [n. d.]. Analyzing and Comparing the
Protection Quality of Security Enhanced Operating Systems. ([n. d.]).

[14] Yuting Chen and Zhendong Su. 2015. Guided differential testing of certificate
validation in SSL/TLS implementations. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering. 793–804.

[15] Luke Deshotels, Razvan Deaconescu, Mihai Chiroiu, Lucas Davi, William Enck,
and Ahmad-Reza Sadeghi. 2016. SandScout: Automatic Detection of Flaws in
iOS Sandbox Profiles. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, Vienna Austria, 704–716. doi:10.
1145/2976749.2978336

[16] David Ferraiolo, Vijayalakshmi Atluri, and Serban Gavrila. 2011. The Policy
Machine: A novel architecture and framework for access control policy specifi-
cation and enforcement. Journal of Systems Architecture 57, 4 (2011), 412–424.
doi:10.1016/j.sysarc.2010.04.005

[17] David F. Ferraiolo, Serban I. Gavrila, Wayne Jansen, and Paul E. Stutzman. 2015.
Policy Machine: Features, Architecture, and Specification. doi:10.6028/NIST.IR.
7987r1

[18] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ra-
maswamy Chandramouli. 2001. Proposed NIST standard for role-based access
control. ACM Trans. Inf. Syst. Secur. 4, 3 (Aug. 2001), 224–274. doi:10.1145/501978.
501980

[19] InterNational Committee for Information Technology Standards. 2020. INCITS
565-2020: Information technology – Next Generation Access Control. https:
//standards.incits.org/higherlogic/ws/public/projects/2328/details

[20] Carrie Gates. 2007. Access control requirements for web 2.0 security and privacy.
IEEE Web 2, 0 (2007), 12–15.

[21] Edward L Glaser. 1967. A brief description of privacy measures in the Multics
operating system. In Proceedings of the April 18-20, 1967, spring joint computer
conference. 303–304.

[22] Grant Hernandez, Swarnim Yadav, Byron J Williams, and Kevin R B Butler. [n. d.].
BigMAC: Fine-Grained Policy Analysis of Android Firmware. ([n. d.]).

[23] Boniface Hicks, Sandra Rueda, Luke St.Clair, Trent Jaeger, and Patrick Mc-
Daniel. 2010. A logical specification and analysis for SELinux MLS policy.
ACM Transactions on Information and System Security 13, 3 (July 2010), 1–31.
doi:10.1145/1805974.1805982

[24] G.J. Holzmann. 1997. The model checker SPIN. IEEE Transactions on Software
Engineering 23, 5 (May 1997), 279–295. doi:10.1109/32.588521

[25] Vincent Hu, David Ferraiolo, Richard Kuhn, Adam Schnitzer, Kenneth Sandlin,
Robert Miller, and Karen Scarfone. 2019. Guide to attribute based access control
(ABAC) definition and considerations. Technical Report NIST Special Publication
(SP) 800-162. National Institute of Standards and Technology. doi:10.6028/NIST.

SP.800-162
[26] Daniel Jackson. 2012. Software Abstractions: logic, language, and analysis. MIT

press.
[27] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: On synthesis of

program analyzers. In Computer Aided Verification: 28th International Conference,
CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II 28. Springer,
422–430.

[28] Wonhoi Kim, Hocheol Nam, Muoi Tran, Amin Jalilov, Zhenkai Liang, Sang Kil
Cha, and Min Suk Kang. 2025. Fork State-Aware Differential Fuzzing for
Blockchain Consensus Implementations. In 2025 IEEE/ACM 47th International
Conference on Software Engineering (ICSE). IEEE Computer Society, 622–622.

[29] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4: formal
verification of an OS kernel. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles. ACM, Big Sky Montana USA, 207–220. doi:10.
1145/1629575.1629596

[30] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. 2013. The
TAMARIN prover for the symbolic analysis of security protocols. In Computer
Aided Verification: 25th International Conference, CAV 2013, Saint Petersburg, Rus-
sia, July 13-19, 2013. Proceedings 25. Springer, 696–701.

[31] DimitriosMichail, Joris Kinable, Barak Naveh, and John V. Sichi. 2020. JGraphT—A
Java Library for Graph Data Structures and Algorithms. ACM Trans. Math. Softw.
46, 2, Article 16 (May 2020), 29 pages.

[32] Theofilos Petsios, Adrian Tang, Salvatore Stolfo, Angelos D Keromytis, and
Suman Jana. 2017. Nezha: Efficient domain-independent differential testing. In
2017 IEEE Symposium on security and privacy (SP). IEEE, 615–632.

[33] Scott Rose, Oliver Borchert, Stuart Mitchell, and Sean Connelly. 2020. Zero Trust
Architecture. doi:10.6028/NIST.SP.800-207

[34] Sandra Rueda, Dave King, and Trent Jaeger. [n. d.]. Verifying Compliance of
Trusted Programs. ([n. d.]).

[35] Yannis Smaragdakis and Martin Bravenboer. 2010. Using Datalog for fast and
easy program analysis. In International Datalog 2.0 Workshop. Springer, 245–251.

[36] NGAC Implementation Team. 2025. NGAC Reference Implementation. Retrieved
November 2024 from https://github.com/usnistgov/policy-machine-core. https:
//github.com/usnistgov/policy-machine-core

[37] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. 2012. Swi-
prolog. Theory and Practice of Logic Programming 12, 1-2 (2012), 67–96.

[38] Jiahe Zhang, Jianjun Chen, Qi Wang, Hangyu Zhang, Chuhan Wang, Jianwei
Zhuge, and Haixin Duan. 2024. Inbox Invasion: Exploiting MIME Ambiguities to
Evade Email Attachment Detectors. In Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security (Salt Lake City, UT, USA)
(CCS ’24). Association for Computing Machinery, New York, NY, USA, 467–481.
doi:10.1145/3658644.3670386

A Functional Architectures

Policy engines play a central role in enterprise security architecture.
Hosted as a cloud service or on the enterprise local network, pol-
icy engines work in concert with Policy Enforcement Point (PEPs)
components, e.g., routers, to control and reconfigure the network
access for protecting resources. The NGAC-compatible policy en-
gine is consistent with the policy engine in the ZTA conceptual
architecture [33]. We now describe the functional architecture of
NGAC to give context to how access requests are processed by
policy engines.

For a resource governed by NGAC, a user can only access it
through resource access.With the functional architecture of NGAC [19],
the resource access information flow is illustrated in Figure 7. A
process on behalf of a user attempts to access a resource through a
PEP (Step 1 ). The PEP exposes an interface for instances of NGAC-
aware processes, enabling them to access resources. The PEP then
sends the access request for decision to a Policy Decision Point
(PDP), which provides an interface for use by the PEP (Step 2 ). In
order to make decisions, the PDP needs to interact with a Policy Ad-
ministration Point (PAP) to retrieve the required policy information
from the PAP (Step 3 ) after the PAP has searched and manipulated
the policy information persisted at a Policy Information Point (PIP).

https://github.com/coq/coq
https://doi.org/10.1145/3532105.3535029
https://doi.org/10.1145/3589608.3593836
https://doi.org/10.6028/NIST.SP.800-207A
https://doi.org/10.6028/NIST.SP.800-204B
https://doi.org/10.1145/3450569.3463563
https://doi.org/10.1145/2976749.2978336
https://doi.org/10.1145/2976749.2978336
https://doi.org/10.1016/j.sysarc.2010.04.005
https://doi.org/10.6028/NIST.IR.7987r1
https://doi.org/10.6028/NIST.IR.7987r1
https://doi.org/10.1145/501978.501980
https://doi.org/10.1145/501978.501980
https://standards.incits.org/higherlogic/ws/public/projects/2328/details
https://standards.incits.org/higherlogic/ws/public/projects/2328/details
https://doi.org/10.1145/1805974.1805982
https://doi.org/10.1109/32.588521
https://doi.org/10.6028/NIST.SP.800-162
https://doi.org/10.6028/NIST.SP.800-162
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.6028/NIST.SP.800-207
https://github.com/usnistgov/policy-machine-core
https://github.com/usnistgov/policy-machine-core
https://doi.org/10.1145/3658644.3670386


SACMAT ’25, July 8–10, 2025, Stony Brook, NY, USA Ben Weintraub, Chanyuan Liu, William Enck, and Cristina Nita-Rotaru

The NGAC policy is persisted at the PIP and constitutes the autho-
rization state of the system. It is collectively defined by the basic
elements and relations. The PDP makes a decision on the access
request and returns the decision and resource locator to the PEP
(Step 4 ). The PEP then issues a directive to a Resource Access
Point (RAP) (Step 5 ) to access the resource. The RAP performs the
operation on the resource and receives the status information and
data (if any), which is eventually returned to the process through
the PEP (Step 6 ).

Policy Enforcement Points 
(PEPs)

Resource Access Points 
(RAPs)

Policy Decision Points 
(PDPs)

Event Processing Point 
(EPP)

Policy Administration Point 
(PAP)

Policy Information Point 
(PIP)

Processes Resources

Optional

1

2

3

4

5

6

Policy Engine

Figure 7: NGAC functional architecture. NGAC-compatible

policy engine comprises the functional entities in the red

dashed box.

B Complex Seed Policy

u1

ua1

oa8

Class

oa6

oa1 oa3 oa4oa2

oa7

oa5

oa9

o1 o4o2 o3 o5 o6

p1, p2

p2

Association
Prohibition

Figure 8: Graphical representation of the complex seed pol-

icy.

C Additional NGAC Model Details

Obligations. Obligations define actions automatically triggered
in response to specific events matching predefined patterns. An obli-
gation relation is a ternary relation (𝑢, 𝑝𝑎𝑡𝑡𝑒𝑟𝑛, 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒) ∈ 𝑂𝐵𝐿𝐼𝐺 ,
where 𝑢 ∈ 𝑈 represents the user responsible for establishing the
obligation and under whose authorization the response is carried
out. The aforementioned policy elements and relations constitute

the NGAC authorization state. An obligation modifies the autho-
rization state by the actions specified in the response, including
changing existing policy elements and relations.

In ProfessorX, we do not include obligation elements, which
change the effectively enforced policy. In practice though, we are
able to model the downstream effects of obligations, because a
processed obligation simply results in either a change in policy
elements or relations—all of which we model. Thus effective policy
changes induced by obligations have the same effect as the muta-
tions we model in our differential mutation analysis framework.

D Prolog Implementation of NGACTiny
legalAssignment(X, Y) :-

assign(X, Y),
((u(X), ua(Y)); (ua(X), ua(Y));
(o(X), oa(Y)); (oa(X), oa(Y))).

isContained(X, Y) :-
X = Y;
legalAssignment(X, Y);
legalAssignment(X, Z),
isContained(Z, Y).

legalAssociation(UA, OA, ARS) :-
association(UA, OA, ARS),
(

(ua(UA), ua(OA), legalAccessRights(ARS));
(ua(UA), oa(OA), legalAccessRights(ARS));
(ua(UA), o(OA), legalAccessRights(ARS))

).

legalAccessRights([H|T]) :-
(ar(H), T = []);
(ar(H), legalAccessRights(T)).

disjProhibited(U, AT, AR) :-
disjunctiveProhibition(U_or_UA, ATI, ARS),
legalAccessRights(ARS),
(ua(AT); oa(AT); o(AT)),
member(AR, ARS),
isContained(U, U_or_UA),
inInclusionSet(AT, ATI).

inInclusionSet(AT, [Head|Tail]) :-
isContained(AT, Head);
inInclusionSet(AT, Tail).

decideAll(U, PE, AR) :-
legalAssociation(UA, PE_Parent, ARS),
member(AR, ARS),
isContained(U, UA),
isContained(PE, PE_Parent),
\+ (

isContained(PE, PE_Prohib),
disjProhibited(U, PE_Prohib, AR)

).

decide(U, O, AR) :-
once(decideAll(U, O, AR)).


	Abstract
	1 Introduction
	2 NGAC Background
	2.1 NGAC Model
	2.2 Related Work

	3 NGAC Modeling
	3.1 NGAC Scope
	3.2 Threat Model
	3.3 Modeling NGAC Policies
	3.4 Implementing NGACTiny

	4 Policy Engine Validation
	4.1 Overview
	4.2 ProfessorX
	4.3 Differential Mutation Analysis Algorithm
	4.4 Implementation

	5 Evaluation
	5.1 Finding Discrepancies (Q1)
	5.2 ProfessorX Performance (Q2)
	5.3 Security Implications (Q3)
	5.4 Root Cause Analysis

	6 Concluding Discussion
	References
	A Functional Architectures
	B Complex Seed Policy
	C Additional NGAC Model Details
	D Prolog Implementation of NGACTiny

