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ABSTRACT
Commercially-available software defined networking (SDN) tech-
nologies will play an important role in protecting the on-premises
resources that remain as enterprises transition to zero trust archi-
tectures. However, existing solutions assume the entire network
resides in a single geographic location, requiring organizations with
multiple sites to manually ensure consistency of security policy
across all sites. In this paper, we present MSNetViews, which ex-
tends a single, globally-defined and managed, enterprise network
security policy to many geographically distributed sites. Each site
operates independently and enforces a site-specific policy slice that
is dynamically parameterized with user location as employees roam
between sites. We build a prototype of MSNetViews and show that
for an enterprise with globally distributed sites, the average time for
policy state to settle after a user roams to a new site is well below
two seconds. As such, we demonstrate that multisite organizations
can efficiently protect their on-premises network-attached devices
via a single global perspective.

CCS CONCEPTS
• Security and privacy → Network security.
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1 INTRODUCTION
After decades of criticisms of “moat-and-gate” defenses, enterprise
network security is on the verge of a fundamental change. Prac-
titioner interest in Zero Trust [40] has reached a tipping point,
recently motivated by requirements stated in US Whitehouse Ex-
ecutive Order EO-14028 [25] and Memo M-22-09 [39]. Zero Trust
models assume the attacker has breached perimeter defenses and
seek to enforce accurate, least-privilege, per-request access deci-
sions to information systems. The predominant Zero Trust models
(e.g., BeyondCorp [46] and BastionZero [50]) require organizations
to place critical business applications on cloud servers where web
application gateways perform multi-factor authentication, device
attestation, and behavioral analytics. However, not all on-premises
resources can be relocated to the cloud (e.g., development servers,
file servers, and device management interfaces), and workstations
remain a high-value target for advanced attacks such as Solori-
gate [19] and NotPetya [6].

NetViews [4] is the most recent work in a series of research pro-
posals [12, 28, 35] that use reactive software-defined networking
(SDN) to enforce least-privilege, per-request connections between
hosts within an enterprise network. Reactive SDN configures every
SDN switch to consult a logically-central SDN controller whenever
it receives a packet that does not match its existing forwarding
rules. If carefully managed, these forwarding rules can efficiently
implement a reference monitor interface [2] to enforce mandatory
controls on network flows. As such, on-premises Zero Trust mod-
els can be constructed to protect hosts and resources that cannot
practically be moved to the cloud.

All prior reactive SDN-based solutions for network access con-
trol assume the enterprise network exists in a single geographic
site. However, most enterprises consist of many geographically
distributed sites. Some enterprises have a small number of very
large sites (e.g., the IBM topology in topology-zoo [38], has 18 sites,
each with a massive number of resources and clients), while oth-
ers have a large number of very small sites (e.g., Well’s Fargo has
5300 branches across the USA). Employees also commonly move
between sites and need differentiated access based on their spe-
cific location context. Globally managing user context across an
organization is important. For example, Memo M-22-09 [39] states
that “Zero trust architectures require metadata about the user to
allow agencies to make risk-based decisions at the policy enforce-
ment point. That metadata is maintained, updated, and supplied
by systems that manage user identities, keeping the appropriate
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metadata associated with the correct user even if that user leaves the
organization or moves to a new position within it. . . .Using centrally
managed systems to provide enterprise identity and access man-
agement services reduces the burden on agency staff to manage
individual accounts and credentials.” (emphasis added).

In this paper, we present MultiSite NetViews (MSNetViews),
which extends a single, globally-defined, enterprise network secu-
rity policy to many geographically distributed sites. MSNetViews
extends prior work by managing many independently-operating
reactive-SDN networks that dynamically react to employee move-
ment between sites, enforcing both role-and location-based access
control policies. MSNetViews also introduces the concept of site-
specific “policy slices,” which avoid unnecessary policy updates and
limits the security policy available at each site on a “need-to-know”
basis. Our performance evaluation shows that for an enterprise with
sites globally distributed, the average time for policy state to settle
after a user roams to a new site is well below two seconds, which is
negligible with respect to the overall experience of traveling, often
hours, and authenticating to a new network.

We make the following contributions in this paper:

• We propose the MSNetViews policy model for supporting user
roaming between sites. Location updates do not change the
global policy specification, but rather parameterize the policy
state at individual sites.

• We propose policy slicing to minimize policy information loss
when a site is compromised. Each site maintains a site-specific
policy containing only the policy elements and rules needed
to govern access to local resources.

• We propose a global administrative model that maintains the
correctness of administrative updates.With multiple admin-
istrators specifying policy for their individual sites, novel
policy checks ensure mistakes do not cause interference
between the role- and location-based policies.

Throughout the paper, we assume all enterprise network sites are
fully provisioned with reactive SDN technology such as OpenFlow.
However, hybrid designs can achieve similar protection by using
legacy VLAN-capable switches to shunt traffic from individual hosts
to SDN-capable distribution switches [1, 31].While both approaches
require changes to networking infrastructure, transition plans are
needed for resources that cannot practically be moved to cloud
servers, particularly for US government organizations needing to
meet the fiscal year 2024 deadline set by Memo M-22-09 [39].

Finally, similar to NetViews, MSNetViews is not a complete
zero trust solution for on-premises devices. The goal of MSNet-
Views is to extend NetViews to a multisite setting. A complete zero
trust solution should include device attestation and the behavioral
analytics. We discuss MSNetViews and zero trust in Section 8.

The remainder of this paper proceeds as follows. Section 2 pro-
vides necessary background. Section 3 overviews our approach.
Sections 4, 5, and 6 describe our design. Section 7 evaluates perfor-
mance. Section 8 discusses MSNetViews and zero trust. Section 9
overviews related work. Section 10 concludes.

Availability: The source code for our NetViews implementation is
available at https://github.com/netviews/ms-netviews.

2 BACKGROUND AND THREAT MODEL
NetViews and SDN: In contrast to proactive SDN (statically in-
stalling rules in switches), reactive SDN provides a flexible refer-
ence monitor interface [2] for limiting attackers’ movement once
they gain access to a host within an enterprise network. Several
prior works have explored using reactive SDN for access con-
trol [4, 12, 28, 35]. MSNetViews builds on NetViews [4], which
uses NIST’s recent Next Generation Access Control (NGAC) pol-
icy language to define policies that determine whether and how a
given host ℎ1 can “see” another host ℎ2. In NetViews, policy “users”
are user-device pairs, “objects” are destination hosts, and “rights”
are transport layer ports (e.g., tcp/22), ICMP types, and ARP types.
NetViews enforces policy using the ONOS SDN controller for Open-
Flow. Initially, SDN switches have no forwarding state. When a
switch receives a packet that does not match any forwarding rules,
it sends a PacketIn message to the SDN controller. The logically
central controller uses multiple applications (e.g., forwarding, ac-
cess control) to determine to which physical port the switch should
forward the packet. Its response to the switch usually takes the form
of a FlowModmessage, which defines a forwarding rule matching fu-
ture packets. ONOS enhances traditional OpenFlow environments
by providing an Intent abstraction that allows SDN applications
to treat the network as “one big switch” with no need to manage
FlowMod messages to individual switches.
NIST NGAC Policy Language: NGAC is a domain-specific lan-
guage for writing access control policies. Below we provide a brief
introduction to its concepts. For more information we refer the
reader to the NGAC whitepaper [15].

NGAC policies are defined in terms of sets of objects and actions
on those objects. An NGAC policy P consists of a set of policy
elements 𝑃𝐸, a set of obligations O, and three sets of policy relations.
The policy relations are: R𝑒 (assignments), R𝑎 (associations), and
R𝑝 (prohibitions). The set of policy elements 𝑃𝐸 includes the sets
of users𝑈 , user attributes 𝑈𝐴, objects 𝑂 , object attributes 𝑂𝐴, and
policy classes 𝑃𝐶 . All objects are object attributes (𝑂 ⊆ 𝑂𝐴).

Policy elements inherit privileges from other policy elements. In
NGAC, the set of assignment relations R𝑒 is a set of pairs of policy
elements. It models the graph-based inheritance between policy
elements. For 𝑒1, 𝑒2 ∈ 𝑃𝐸 and (𝑒1, 𝑒2) ∈ R𝑒 , we denote 𝑒1 inherits
privileges associated with 𝑒2 by writing 𝑒1 → 𝑒2. This relation
indicates that any privilege assigned to 𝑒2 will also be held by 𝑒1.
The assignment relation defines an upside-down tree structure, of
which the policy classes 𝑃𝐶 are roots. We call a series of pairwise
relations connecting two objects a path. We denote paths with the
{ relation, e.g., 𝑢𝑎 { 𝑝𝑐 indicates there is a path from 𝑢𝑎 to 𝑝𝑐 .
Example assignment relation graphs are shown in Figure 2.

Users are granted access privileges to objects through association
relations. The set of association relations R𝑎 is a set of triplets
of user attributes, access rights (privileges), and object attributes.
Let 𝐴𝑅 be a set of privileges, if 𝑢𝑎 ∈ 𝑈𝐴 and 𝑜𝑎 ∈ 𝑂𝐴, then we
write (𝑢𝑎,𝐴𝑅, 𝑜𝑎) ∈ R𝑎 to indicate that all users 𝑢 ∈ 𝑈 with an
assignment path 𝑢 { 𝑢𝑎 can perform rights 𝐴𝑅 on all objects
𝑜 ∈ 𝑂 with an assignment path 𝑜 { 𝑜𝑎. NGAC requires association
relations for all policy classes for an action to be granted. The
allowed set of rights is the intersection of the maximum sets of
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Figure 1: Overview of our approach. Each site runs its own
SDN network with a unique subset of the global policy. Users
roaming between sites cause location update events that are
propagated to other sites as appropriate. Each SDN controller
has a different access control policy, as indicated by the dif-
ferent shapes (circle, square, diamond).

rights for each policy class. Association relations are shown as
downward blue arcs in Figure 2.

Users are explicitly denied access to resources using prohibition
relations. The set of prohibition relations R𝑝 is a set of triples of
user attributes, privileges, and object attributes. For prohibition
relations, the existence of multiple policy classes does not matter,
and prohibitions always supersede association relations. Prohibition
relations are shown as upward red arcs in Figure 2.

Finally, NGAC allows dynamic updates to policy elements and
policy relations using obligations. The set of obligations O consists
of pairs of event patterns 𝑒𝑝 and responses 𝑟 to those patterns
denoted ⟨𝑒𝑝, 𝑟 ⟩. If an specific event (e.g., change of user location)
matches the event pattern, the associated responses are immediately
executed, changing the state of the policy. The dashed arrow in
Figure 2 depicts an assignment relation created by an obligation.
Threat Model & Assumptions:We assume attackers have control
of one or more hosts within the enterprise and are knowledge-
able about the environment and defenses. The attacker seeks to
compromise devices, exfiltrate data, impersonate users, or disable
enterprise services. We assume a worst case scenario where attack-
ers have knowledge of remote code exploits for hosts (e.g., as in
NotPetya [6]) and seek to mitigate movement using mandatory con-
trols within the network. Furthermore, for organizations with many
small sites, we assume a specific local site can be compromised,
leaking enterprise policy and configurations of that site.

Our trusted computing base (TCB) includes the SDN security
application, data plane devices, policy engines, and identity man-
agement services. We assume administrators securely access the
policy configuration interface using TLS-protected communication
and multi-factor authentication. We do not consider malicious-but-
trusted administrators reconfiguring or updating their authorized
system components. The TCB extends to other SDN applications
running on the controller not separated from MSNetViews. We
assume defenses for known DoS concerns for SDN are deployed.
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Figure 2: MSNetViews policy example depicting two sites (𝑆1
and 𝑆2). Here, the user ⟨𝐴𝑙𝑖𝑐𝑒, 𝐿1⟩ can SSH to object 𝑂𝑐 while
attached to user attribute 𝑆2. The bold lined paths through
two policy classes (“Role” and “Location”) indicates the access
control paths needed to be followed for determining this
"allow" decision. Downward blue arcs denote associations,
each of which is annotated with a set of rights (e.g., tcp/22).

3 MSNETVIEWS OVERVIEW
Enterprise networks require least-privilege policies that restrict net-
work communication between on-premises hosts. Extending prior
solutions to consider multisite environments requires overcoming
the following research challenges.

• Users commonly move between sites, requiring differentiated
access based on their location. The policy and enforcement
must dynamically update based on a user’s location, and
ensure that state is consistent across sites.

• Compromise of a single site should not leak the global policy.
Security policies are often confidential. An exposed policy
at one site should not leak policy details of unrelated sites.

• Site administrators should only modify policies for their local
resources. Updates to the global policy should be controlled
and maintain policy semantics.

We overcame these challenges using a global-local design that
simplifies state consistency maintenance. MSNetViews consists
of a global manager that serves as a permanent, central leader,
which communicates policy and location updates to independent
reactive SDN networks. As a result, MSNetViews never requires
policies to be merged, eliminating the potential for policy conflicts.
Using independent SDN networks also allows internal traffic to
continue if the WAN connection fails. In addition to the global-local
design, MSNetViews models location policy in a way that allows it
to be parameterized, which eliminates full policy updates on each
location update event, leading to faster consistency across sites.

Figure 1 shows howMSNetViews operates at both the global and
local scales. The global manager coordinates policy management
between sites. We envision the global manager residing in a cloud
service, though it could be hosted within a site. Site administrators
specify their network access control policy directly in the global
manager through an administrator console. The global manager
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needs only to reestablish policy consistency across sites when a
policy administrator updates the policy.

At the local scale, each site runs its own independent reactive
SDN network with its own SDN controller and local manager to
enforce policy. A local manager operates at each site, managing
the local policy state, users, and interactions with the global man-
ager. A user’s physical movement initiate location and identity
update-event, which initiate local policy update in the new-site
dynamically. The global manager only propagates the location and
identity information to other local-sites, allowing dynamic update
in their local policy accordingly.
Modeling Location Policy: Shown in Figure 2, MSNetViews mod-
els location-specific policy by creating a separate policy class with
separate user and object attributes. This separation (a) eases policy
management by clarifying the two types of policies and (b) en-
sures the policy semantics remains intact. To demonstrate the
importance for policy semantics, consider the case where both
policy classes use object attribute 𝑜𝑎, that is, 𝑜𝑎 { 𝑝𝑐𝑟𝑜𝑙𝑒 and
𝑜𝑎 { 𝑝𝑐𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 . Any user that satisfies the location requirement
(𝑢 { 𝑢𝑎, 𝑢𝑎 { 𝑝𝑐𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 , and (𝑢𝑎,𝐴𝑅, 𝑜𝑎)) can then access any
object 𝑜 , when 𝑜 { 𝑜𝑎, regardless of the “Role” policy.

We simplify policy management by not including explicit as-
signments from users to site-attributes in the global policy. Instead,
we use NGAC obligations to create the dynamic assignments be-
tween user-device pairs (NGAC users) and user attributes for the
“Location” policy class in the local policy. For example, the dashed
assignment from ⟨𝐴𝑙𝑖𝑐𝑒, 𝐿1⟩ to 𝑆2 in Figure 2 will be dynamically
added in the local sites.
Supporting User Roaming:Users maymove between sites (with a
travel time ranging from several minutes to days), a process we call
roaming. A user at a particular site may expect to be able to access
local resources (e.g., printers and wireless displays). Conversely,
they should not be able to access those local resources while not
at that site. Other resources (e.g., hardened internal servers) may
only be accessible from specific sites.

We present an overview of the roaming process in Figure 1.When
the user authenticates to access a new site (e.g., via 802.1x in WiFi
enterprise) (step 1 ), MSNetViews triggers an event to modify only
the local policy state via NGAC obligations. The local manager then
informs the global manager (step 2 ) of the location update event.
The global manager, in turn, informs the other sites of the location
update (step 3 ). This location update event includes mapping the
user-device pair to both its new IP address as well as its new site.
We discuss roaming in greater detail in Section 4.
Site-Specific Policy Slices: Network administrators commonly
consider security policies to be confidential, as they provide valu-
able intelligence to attackers. A compromise of any individual site
should not reveal the global policy. To ensure this, MSNetViews
provides per-site policies using a novel policy slicing technique
that creates a “need-to-know” policy for each site.

Policy slicing mainly provides two benefits, (1) the attacker only
learns the access control policy for the objects (network resources)
of the compromised site and (2) it only learns about the users
who have access to the compromised site’s objects. The reduction
in information about users is highly dependent on the type of
resources and the policy definition itself. For example, if a site
(e.g., the central bank branch) has resources (e.g., an email server)

that nearly all employees should access, there will be a minimal
reduction in the number of users.

Policy slicing works by identifying resource objects and users of
a given site. Our slicing algorithm then traverses the policy graph
building marking the subgraph of components connecting the users
and resources. That subgraph defines the policy slice that each site
will have access to. We discuss policy slicing formally in Section 5.
Policy Administration: Not all administrators can change the
entire policy. MSNetViews uses administrative policies to limit what
each administrator can do. MSNetViews also prevents policy errors
using a policy checker that traverses the set of the candidate policies
and evaluates then against a policy invariants. Violation of these
invariants could lead to conflicts between themultiple policy classes.
We discuss policy administration in Section 6.

4 SUPPORTING ROAMING USERS
Geographically distributed enterprises have multiple distinct sites.
Business operations frequently allow (or require) users to access lo-
cal network resources while physically present at a site. For example,
a policy may permit all users at site 𝑆𝑥 to connect to printers and
network-connected displays within 𝑆𝑥 . Alternatively, a policy may
restrict server access to only users at site 𝑆𝑥 . This section considers
a policy semantics and enforcement system with the flexibility to
specify policies for users that move (roam) between multiple sites.1

4.1 Dynamic Policy Update
Handling roaming users presents two major policy-related chal-
lenges. First, the system must update policies, in real-time, in accor-
dance with changing user locations. Second, those updated policies,
and the enforcement of those policies, must be kept consistent
across all sites in the enterprise. MSNetViews achieves dynamic
policy updates using NGAC’s concept of obligations, which are
rules that accept events as input. Based on that input, the policy
engine executes a set of pre-defined actions that change the set of
enforceable rules. As a result, the administrator-defined, global pol-
icy is unchanged, thereby reducing the complexity of maintaining
policy consistency across sites.

The MSNetViews policy-specification uses NGAC obligations
to manage assignments between user-device pairs (NGAC users)
and user attributes for the “Location” policy class. As such, the
administrator-defined policy does not include explicit assignments
from users to sites. For example, the dashed assignment from
⟨𝐴𝑙𝑖𝑐𝑒, 𝐿1⟩ to 𝑆2 in Figure 2 is dynamically added. By omitting
this assignment from the policy specification, MSNetViews needs
only reestablish policy consistency across sites when a policy ad-
ministrator updates the policy.

At each site, external security events are passed to that site’s
NGAC event processing point (EPP), which causes the policy to
execute the actions defined by matching rules. Obligations take
the form ⟨𝑒𝑝, 𝑟 ⟩ where 𝑒𝑝 is an event pattern and 𝑟 is a response.
The response, 𝑟 , is a set of actions. This pair is commonly read as
when 𝑒𝑝 do 𝑟 . NGAC obligations support both internal and external
events, where internal events are triggered by policy actions (e.g.,

1While we consider location on the granularity of a network site, our policy model is
flexible enough to offer finer granularity (e.g., building or room), assuming the network
enforcement mechanisms support it (e.g., RoArray [22]).
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a policy query allows Alice to read file 𝑓 ) and external events are
reported to the policy engine via an outward facing API.

An event pattern 𝑒𝑝 is a tuple ⟨𝑢, 𝑝𝑐, 𝑜𝑝, 𝑝𝑒⟩, where a user 𝑢 ∈ 𝑈
is performing an operation 𝑜𝑝 ∈ 𝑂𝑃 on a policy element 𝑝𝑒 ∈ 𝑃𝐸 in
policy class 𝑝𝑐 ∈ 𝑃𝐶 . We model location updates as external events.
Each event describes an administrative (𝑢 = admin) assignment
(𝑜𝑝 = assign to) of user-device pairs to the user attribute in the
location policy class (𝑝𝑐 = Location) corresponding to the new
site’s location (e.g., 𝑝𝑒 = 𝑆2). Upon receipt of a matching event pat-
tern, the policy engine updates the location attribute assignments
as appropriate. An environment with 𝑛 sites requires 𝑛 obligation
rules, which are programmatically generated.

The following example obligation modifies assignments when a
user-device pair updates its location to site 𝑆2.

when ⟨admin, Location, assign to, 𝑆2⟩
do deassign(child_of_assign, 𝑆1)

assign(child_of_assign, 𝑆2)
deassign(child_of_assign, 𝑆3)
. . .
deassign(child_of_assign, 𝑆𝑛)

Informally, when an administrative event assigns a user-device
pair to attribute 𝑆2 in the Location policy class, then the pol-
icy deassigns that user-device pair from attributes 𝑆1, 𝑆3, . . . , 𝑆𝑛 .
child_of_assign is a built-in function that returns the user-device
pair that was assigned to 𝑆2. We found that external events did not
actually create the assignment being matched, therefore we include
the assignment in the set of response actions.

4.2 Policy State Consistency Across Sites
Whenever a user roams from one site to another, a location update
event is triggered by the local manager of the new site. There is a
short post-roaming delay between when the triggering site begins
enforcing its new policy rules and when relevant remote sites begin
enforcing their new policy rules. This transmission delay is inherent
in any distributed system. Fortunately, the resulting policy state
inconsistency has limited impact in practice.

Policies can be inconsistent in two generalized scenarios. In the
first scenario, a user may be unable to access a resource they should
now have access to. As this inconsistency occurs only in the short
period after the user attaches to a new network, the impact will
be minimal. The local policy engine will shortly catch up with
the pending updates, and in worst case, the user will only need to
reattempt the connection (e.g., refresh a page in their web browser).
In the second scenario, an inconsistency may theoretically allow a
user to connect to a network resource they should no longer have
access to. In practice, this is not a problem. When a user joins a
new site, they will be assigned a different IP address than when
in the previous site. Connections from the new IP address will fail.
Attempts to forge the old IP address will also fail. If the destination
is in the new site, the new site has the updated policy state. If the
destination is not in the new site, the packet will not be routed out
of the new site. We measure post-roaming stabilization in Section 7.

5 POLICY SLICING
Organizations commonly consider their firewall policies to be con-
fidential [32]. Intuitively, if an attacker has full knowledge of the

firewall configuration, they can identify and more easily maneuver
towards valuable targets. We mitigate policy exposure by proposing
policy slicing, a method for distributing policy information based
on the need of the site. Therefore, if a single site is compromised,
the attacker cannot learn the global policy. It also forces attackers
to perform active reconnaissance, which raises the probability of
detection. This section presents our policy slicing algorithm and
with an explanation of how MSNetViews selectively updates the
policy slices for individual sites.

5.1 Policy Slicing Overview
Each site only needs to know how to control access to local resources.
As such, MSNetViews uses policy slicing to compute and distribute
a site-specific policy to each site.

Definition 1 (Site-Specific Policy). Given an MSNetViews policy
P and a site 𝑆𝑥 , a policy P𝑥 is a site-specific policy if P𝑥 ⊑ P and
P𝑥 only contains the policy elements, assignments, associations,
and prohibitions needed to evaluate access control decisions for
site 𝑆𝑥 . ⊑ denotes the policy elements, assignments, associations,
and prohibitions of P𝑥 are a subset of those in P.

Figure 3 provides an example (excluding location policy class
from Figure 2) that depicts the high-level intuition behind policy
slicing. Intuitively, the policy slices for site 𝑆1 (Fig. 3b) and site
𝑆2 (Fig. 3c) are created by identifying the objects specific to each
site and then finding all of the object attributes, user attributes,
and users that refer to those objects by inspecting the assignments,
associations, and prohibitions.

As shown in Figure 3b, site 𝑆2 only needs the subset of the policy
relevant to resource 𝑂𝑐 and 𝑂𝑑 . This site-specific policy includes
object attributes 𝑆2𝐺 , 𝑆2𝐹 , 𝑆2𝐻 , and 𝑆2𝐾 are also included for
directly or indirectly assigned to resource 𝑂𝑐 and 𝑂𝑑 . Furthermore,
the policy includes user attribute 𝐴, because there is an association
rule connecting 𝐴 to 𝑆2𝐹 . Next, the policy includes user ⟨𝐴𝑙𝑖𝑐𝑒, 𝐿1⟩,
because ⟨𝐴𝑙𝑖𝑐𝑒, 𝐿1⟩ { 𝐴. The policy slice for site 𝑆1 in Figure 3c is
constructed similarly and also considers prohibition relations.

Note that additional policy protection can be achieved by obfus-
cating the names of user and object attributes. If an administrator
wishes to have useful information for debugging, only attributes
without associations or prohibitions should be obfuscated.

5.2 Policy Slicing Algorithm
The policy slicing algorithm takes as input (1) a global policy, (2) a
site 𝑆𝑥 , and (3) the set of objects for 𝑆𝑥 . It outputs a site-specific
policy (Def. 1). The algorithm traverses the global policy to identify
all policy elements, assignments, associations, and prohibitions to
determine which ones are relevant for site 𝑆𝑥 .

Definition 2 (Relevant Objects). Let 𝑂 be the set of objects in the
global policy P. The set of relevant objects 𝑂𝑥 ⊆ 𝑂 for site 𝑆𝑥 is
the set of network resources that reside in site 𝑆𝑥 .

The set of relevant object attributes are all the object attributes
on a path between a relevant object and a policy class. This set
is equivalent to all the object attributes with a path to a relevant
object. All objects are also object attributes.
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Figure 3: Policy slicing example for the policy in Figure 2 (excluding location policy class for simplicity).

Definition 3 (Relevant Object Attributes). Let 𝑂𝐴 be the set of
object attributes in the global policy P and𝑂𝑥 be the set of relevant
objects (Def. 2). The set of relevant objects𝑂𝐴𝑥 is the set {𝑜𝑎 | 𝑜𝑎 ∈
𝑂𝐴 ∧ ∃𝑜 ∈ 𝑂𝑥 , 𝑜 { 𝑜𝑎} ∪𝑂𝑥 .

The relevant associations and relevant prohibitions are those that
target relevant object attributes.

Definition 4 (Relevant Associations). Let R𝑎 be the set of associa-
tions in the global policy P and 𝑂𝐴𝑥 be the set of relevant object
attributes (Def. 3). The set of relevant associations R𝑎,𝑥 is the set
{𝑟 | 𝑟 ∈ R𝑎 ∧ 𝑟 = (𝑢𝑎, _, 𝑜𝑎) ∧ 𝑜𝑎 ∈ 𝑂𝐴𝑥 }.

Definition 5 (Relevant Prohibitions). Let R𝑝 be the set of associa-
tions in the global policy P and 𝑂𝐴𝑥 be the set of relevant object
attributes (Def. 3). The set of relevant prohibitions R𝑝,𝑥 is the set
{𝑟 | 𝑟 ∈ R𝑝 ∧ 𝑟 = (𝑢𝑎, _, 𝑜𝑎) ∧ 𝑜𝑎 ∈ 𝑂𝐴𝑥 }.

Relevant user attributes require careful consideration. This set
includes both the user attributes referenced by a relevant asso-
ciation and all of the user attributes on paths between users and
policy classes, but only those which traverse through user attributes
referenced by a relevant association or prohibition.

Definition 6 (Relevant User Attributes). Let 𝑈𝐴 be the set of user
attributes in the global policy P, R𝑎,𝑥 be the relevant associations
(Def. 4), and R𝑝,𝑥 be the relevant prohibitions (Def. 5). Let𝑈𝐴′

𝑥 be
the set {𝑢𝑎 | 𝑢𝑎 ∈ 𝑈𝐴∧ [∃(𝑢𝑎, _, 𝑜𝑎) ∈ R𝑎,𝑥 ∨∃(𝑢𝑎, _, 𝑜𝑎) ∈ R𝑝,𝑥 ]}.
The set of relevant user attributes 𝑈𝐴𝑥 is {𝑢𝑎 | 𝑢𝑎 ∈ 𝑈𝐴 ∧ ∃𝑢𝑎′ ∈
𝑈𝐴′

𝑥 , (𝑢𝑎 { 𝑢𝑎′ ∨ 𝑢𝑎′ { 𝑢𝑎)} ∪𝑈𝐴′
𝑥 .

The set of relevant users is then straightforward to define. Note
that unlike objects, users are not user attributes.

Definition 7 (Relevant Users). Let𝑈 be the set of users in the global
policy P and𝑈𝐴𝑥 be the set of relevant user attributes (Def. 6). The
set of relevant users 𝑈𝑥 is {𝑢 | 𝑢 ∈ 𝑈 ∧ ∃𝑢𝑎 ∈ 𝑈𝐴𝑥 , 𝑢 { 𝑢𝑎}.

The final information required to create the site-specific policy
is the set of relevant assignments, which are all of the assignments
related to the relevant policy elements.

Definition 8 (Relevant Assignments). Let R𝑒 be the set of assign-
ments in the global policy and 𝑃𝐸𝑥 = 𝑈𝑥 ∪𝑈𝐴𝑥 ∪𝑂𝐴𝑥 ∪ 𝑃𝐶 be the
set of relevant policy elements (Defs. 3, 6, 7). The set of relevant
assignments R𝑒,𝑥 is {𝑟 | 𝑟 ∈ R𝑒 ∧ ∃𝑒1, 𝑒2 ∈ 𝑃𝐸𝑥 , 𝑟 = (𝑒1, 𝑒2)}.

Finally, we do not discuss relevant obligations, as we limit our
use of obligations to the creation of assignments for managing
user roaming between sites (Section 4). We leave the treatment of
additional obligation types to future work.

Theorem (Policy Slice Correctness). Let P be a global policy and
P𝑥 be site 𝑆𝑥 ’s policy slice for objects 𝑂𝑥 . Policy slice P𝑥 is correct
if there does not exist a user 𝑢 that has more or less access rights to
an object 𝑜 ∈ 𝑂𝑥 in P𝑥 than in P.

Proof. We begin by proving that a user 𝑢 cannot have more
access rights in P𝑥 . Access rights are granted by either (a) adding an
association that grants access rights; (b) adding an assignment that
creates an assignment path from user 𝑢 to a user attribute that has
an association granting access rights; (c) adding an assignment that
creates an assignment path from an object 𝑜 to an object attribute
that is the target of an association inherited by user 𝑢; or (d) the
removal of a prohibition that restricted access rights. Since the
policy slicing algorithm does not add any assignments or associa-
tions, the first three cases do not apply. Based on the definition of
relevant prohibitions (Def. 5), prohibitions are not removed if they
reference a relevant object attribute (Def. 3), which are all of the
object attributes that have a path from all objects in 𝑂𝑥 . Therefore,
no prohibitions related to objects in 𝑂𝑥 are removed. Hence user 𝑢
cannot have more access rights in P𝑥 .

Next we prove that a user 𝑢 cannot have less access rights in
P𝑥 . Access rights are removed by either (a) adding prohibitions;
(b) removing an association that grants access rights; (c) remov-
ing an assignment on an assignment path from user 𝑢 to a user
attribute with an association granting access rights; (d) removing
an assignment on an assignment path from an object in 𝑂𝑥 to an
association granting access rights; or (e) removing a user from the
policy. Since the policy slicing algorithm does not add any prohibi-
tions, case (a) does cannot occur. Based on the definition of relevant
object attributes (Def. 3), case (d) cannot occur. Following this and
the definition of relevant associations (Def. 4), case (c) cannot occur.
Following this and the definition of relevant user attributes (Def. 6),
case (b) cannot occur. Finally, following this and the definition of
relevant users (Def. 7), case (e) cannot occur. Therefore, user 𝑢
cannot have less access rights in P𝑥 . □

5.3 Managing Policy Updates
Network administrators will update the global policy over time.
However, not every update will impact all sites. MSNetViews op-
timizes policy updates by only generating and distributing policy
slices for sites impacted by the policy update. Our key intuition
is that the set of impacted sites can be easily determined by con-
sidering the set of policy elements that are impacted by the policy
change. If a site does not contain any impacted policy elements, its
policy slice does not need to be regenerated and retransmitted.
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Definition 9 (Impacted Policy Elements). Let P be a global policy
and P′ be an update to P. The set of impacted policy elements is
determined by the function 𝛿 (P,P′), which includes: (1) all policy
elements added or removed and (2) all policy elements referenced
by an assignment, association, or prohibition that has been added,
removed, or changed.

We now prove that if the policy P𝑥 for site 𝑆𝑥 does not contain
an impacted policy element, then the policy slice for site 𝑆𝑥 for P
is identical to its the policy slice for P′.

Theorem (Identical Policy Slice). Let P be a global policy and P′

be an update to P. Let P𝑥 and P′
𝑥 be site 𝑆𝑥 ’s policy slices for P

and P′, respectively. Let 𝑃𝐸𝑥 be the set of policy elements in P𝑥 . If
𝛿 (P,P′) ∩ 𝑃𝐸𝑥 = ∅, then P𝑥 = P′

𝑥 .

Proof. We provide a proof by contradiction. Assume P𝑥 ≠ P′
𝑥 .

Let 𝑃𝐸𝑥 and 𝑃𝐸′𝑥 be the policy elements in P𝑥 and P′
𝑥 , respectively.

Recall P𝑥 ⊑ P and P′
𝑥 ⊑ P′ by definition. The difference that

causes P𝑥 ≠ P′
𝑥 could only result from the following scenarios:

(a) adding or removing a policy element, (b) adding or removing an
assignment, association, or prohibition, or (c) changing the policy
elements referenced by an assignment, association, or prohibition.

If policy element 𝑒1 was added (𝑒1 ∈ 𝑃𝐸′𝑥 and 𝑒1 ∉ 𝑃𝐸𝑥 ), then
there must exist an assignment in P′

𝑥 from 𝑒1 to a policy element 𝑒2
where 𝑒2 is in 𝑃𝐸𝑥 . This is because all users, objects, and attributes
have paths that end in a policy class, and the set of policy classes is
fixed. Since 𝑒1 is new, the assignment did not exist in P𝑥 . Therefore
𝑒2 ∈ 𝛿 (P,P′). Since 𝑒2 cannot be in both 𝑃𝐸𝑥 and 𝛿 (P,P′), this is
a contradiction.

If a policy element 𝑒1 was removed (𝑒1 ∈ 𝑃𝐸𝑥 and 𝑒1 ∉ 𝑃𝐸′𝑥 ),
either 𝑒1 was removed from the global policy P or it was only
removed fromP𝑥 but remains in the global policy. If 𝑒1 was removed
from the global policy, then 𝑒1 must be in 𝛿 (P,P′), which is a
contradiction. If 𝑒1 was not removed from the global policy, but it
was removed from P𝑥 , then there must exist an assignment in P𝑥

from 𝑒1 to a policy element 𝑒2 where 𝑒2 is in 𝑃𝐸𝑥 . This situation
can only occur if that assignment was removed, which would cause
𝑒2 to be in 𝛿 (P,P′). Since 𝑒2 cannot be in both 𝑃𝐸𝑥 and 𝛿 (P,P′),
this is a contradiction.

The remaining cases are trivial. If no policy elements are added
or removed, and there is an added, removed, or changed assignment,
association, or prohibition, it must refer to a policy element 𝑒 in 𝑃𝐸𝑥 .
However, 𝑒 would then also be in 𝛿 (P,P′), which is a contradiction.
Therefore, P𝑥 = P′

𝑥 . □

5.4 Cross-Site Traffic
MSNetViews’s site-specific policies ensure that each site only has
enough information to enforce access on local resources. While
this goal minimizes policy disclosure if a site is compromised, it
requires an allow-all-outbound policy between sites. However, if not
carefully addressed, hosts are vulnerable to unauthorized, cross-site
accesses by abusing this allow-all-outbound policy to circumvent
the global policy.

Figure 4 depicts a simplified attack scenario where the attacker
host ℎ𝑎 is in site 𝑆2 and the victim host ℎ𝑣 is in site 𝑆1. Setup:
The attacker tricks ℎ𝑣 into making a connection to ℎ𝑎 (e.g., via a
resource on a web page). The first packet is allowed to exit 𝑆1 via

Site S2

hv haG1 G2

sw1: Forwarding Rules
dst: ha, src: hv, next-hop: G1, …
dst: hv, src: ha , next-hop: hv…

sw2: Forwarding Rules
dst: ha, src: hv, action: drop, …

Site S1

Setup 
Phase

Attack 
Phase

sw1 sw2

hv haG1 G2

sw1: Forwarding Rules
dst: ha, src: hv, next-hop: G1, …
dst: hv, src: ha , next-hop: hv…

sw2: Forwarding Rules
dst: hv, src: ha, next-hop: G2, …
dst: ha, src: hv , next-hop: ha

sw1 sw2

Figure 4: Policy slicing introduces an attack scenario for
cross-site traffic. Since sites 𝑆1 and 𝑆2 have incomplete infor-
mation, and they must allow all outbound traffic.

gateway 𝐺1 but is denied at 𝑠𝑤2 when it enters 𝑆2. At this point,
𝑆1 is configured to allow reply traffic from host ℎ𝑎 . Attack: Host
ℎ𝑎 now connects to ℎ𝑣 . The allow-all-outbound policy in site 𝑆2
directs 𝑆2’s gateway𝐺2 to forward the packet to site 𝑆1. Switch 𝑠𝑤1
then delivers the packet to ℎ𝑣 , because it appears to be valid return
traffic from the original connection.

Note that ℎ𝑎 can connect to any port on host ℎ𝑣 , because Net-
Views [4] optimizes for applications that commonly use multiple
connection requests (e.g., HTTP) by allowing any client source port,
which avoids redundant flow rules. This attack is not possible in a
single-site setting, because the connection to ℎ𝑎 would have been
denied and the reply path would not have been set up. Similarly,
without a site-specific policy in multisite setting, the global policy
would have enforced the policy at the source-site.

The attack is a result of unverified reverse cross-site traffic. If site
𝑆2 knows that site 𝑆1 denied the packet, it will not confuse ℎ𝑎 ’s con-
nection attempt with valid reply traffic. This insight leads us to two
possible solutions. The simplest solution is for the destination site
to securely inform the originating site that the packet was denied
as it entered the site. It will allow the originating site to remove
the corresponding forwarding rules. A more elegant solution is
for destination sites to include an unforgeable validation bit for all
reply traffic allowed by the local policy. The gateway could ensure
that a designated bit in the IP header is only set for reply traffic. The
originating site then will only allow reply-traffic from the trusted
destination site if the validation is bit set. The validation bit solution
can be efficiently implemented in reactive SDN environments that
allow manipulation of headers in addition to forwarding.

6 ADMINISTRATION OF POLICY
Enterprises often have many policy administrators with at least
one administrator per site. MSNetViews requires all policy changes
to occur within the centralized global manager. We assume a se-
cure admin-console that allows administrators to use their private
credentials to access the global policy. This section describes how
MSNetViews (1) limits the privileges of individual policy adminis-
trators and (2) prevents policy administrators from making errors
that unintentionally change the policy semantics.
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Figure 5: Example administrative policy. The left side defines
an administrative policy. The ^-ended lines show adminis-
trative access rights on non-administrative policy (excluded
location policy class from Figure 2 for simplicity).

6.1 Administrative Policy
MSNetViews uses NGAC’s existing administrative policy model
for specifying what actions individual policy administrators can
perform. The left side of Figure 5 depicts an example NGAC ad-
ministrative policy that defines administrative relations to the non-
administrative policy.
Administrative Authority: NGAC administrative policies orga-
nize administrators into users and user attributes just as with non-
administrative policy. By convention, NGAC defines three levels of
administrative authority: (1) Principal Authority (PA), (2) Domain
Administrator (DA), and (3) Subdomain Administrator (SA). DAs
and SAs are subordinate to PAs. A PA is authorized to access the
entire global policy. It is the only authority with the ability to cre-
ate a policy class. The PA can then create and assign subordinate
administrators to manage different segments of the global policy.
In an enterprise setting, a DA is the appropriate authority for a site
administrator, as it manages the policy elements relevant to its own
site (as shown in Figure 5).
Administrative Relations: An administrator’s ability to update
the enterprise policy (i.e., the non-administrative policy) is deter-
mined by administrative relations, which are analogous to the non-
administrative policy relations described in Section 2. Administra-
tive associations grant administrative access rights including: (1) ad-
dition or deletion of a policy element, (2) addition or deletion of
assignments between policy elements, and (3) addition, deletion or
update of an association, prohibition, or obligation. Administrative
prohibitions and obligations are the same as their non-administrative
counterparts, only with administrative operations.

6.2 Policy Checker
MSNetViews ensures each update from a policy administrator is
valid and does not contain errors that unintentionally change the
policy semantics. Policy checks are needed for (a) updating policy
elements (users, objects, object-attributes, or user-attributes) and
(b) updating relations (assignments, associations, or prohibitions).
The MSNetViews uses NGAC policy engine reference implemen-
tation (policy-machine-core) [27], which includes checks for all
the NGAC-defined syntax and graph-related inconsistencies (e.g.,
existence of loops). However, we found several limitations with
NGAC’s existing policy checks.
Missing Checks for Policy Elements: The NGAC documenta-
tion [17] states that a policy element should not be declared without

Table 1: MSNetViews’s Additional Policy Check

Rule Purpose

(1) Dangling PE Each 𝑝𝑒 ∈ 𝑃𝐸 must lead to at least one 𝑝𝑐 ∈ 𝑃𝐶

(2) Exclusive UA Each 𝑢𝑎 ∈ 𝑈𝐴 must lead to only one 𝑝𝑐 ∈ 𝑃𝐶

(3) Exclusive OA Each 𝑜𝑎 ∈ 𝑂𝐴 must lead to only one 𝑝𝑐 ∈ 𝑃𝐶

(4) Exclusive
Associations

The source and target attributes of an association
relation must lead to same policy class.

(5) Exclusive
Prohibitions

The source and target attributes of a prohibition
relation must lead to same policy class.

a corresponding assignment relation. Such dangling policy elements
introduce inconsistencies in policy enforcement and mediation
of the location-context. We found that the policy-machine-core
implementation does not perform this check.
Missing Checks for Policy Relations: The policy-machine-core
implementation ensures NGAC’s requirement that assignment rela-
tions are acyclic, irreflexive, and not defined from an object attribute
to an object. However, neither the NGAC documentation or im-
plementation ensure that policy elements have a path to only one
policy class, which is important for ensuring separation between
the policy classes. As discussed in Section 4, sharing user or object
attributes between policy classes can unintentionally override rules.

Next, the policy-machine-core performs syntax, redundancy, ex-
istence, and similar checks for associations and prohibitions in
the NGAC documentation. However, we observe that associations
and prohibitions referencing policy elements belonging to multi-
ple policy classes contradict MSNetViews’ location-aware policy
enforcement. Therefore, additional checks are required.
Policy Check Enhancements: Table 1 lists the five policy checks
we added the policy-machine-core. Rule (1) ensures the policy does
not include any dangling policy elements that do not lead to a policy
class. Rules (2) and (3) ensure that user and object attributes can
only lead to one policy class. Finally, Rules (4) and (5) ensure that
associations and prohibitions do not combine attributes from two
different policy classes, which ensures the separation of the two
policies. Please refer to our online appendix [3] for more detail.

7 PERFORMANCE EVALUATION
In this section, we evaluate the performance ofMSNetViews through
the following research questions:

Q1 How does MSNetViews enforcement impact system latency
and throughput? (Section 7.2)

Q2 How long does MSNetViews take to stabilize after a user
roams between sites? (Section 7.3)

Q3 How expensive are policy checking and update operations,
and do they scale? (Section 7.4)

7.1 Network Emulation Methodology
Emulated Network Design: We emulate our enterprise networks
using Mininet [44] and ONOS [20]. Because no enterprise has pub-
licly released its network topology, we model a multisite enterprise
as two sites with identical topologies. Performing the performance
evaluation with only two sites is sufficient, as it represents the
case where all sites have direct WAN connections to one another.
We emulate this site-to-site connection with a low-overhead GRE
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Figure 6: Evaluation topologies for MSNetViews. We repli-
cate the same topology at each site, selecting from either
MiniStanford [49] or Cisco [49]. MiniStanford [49] is a Stan-
ford backbone network with 100 devices and 25 switches.
Cisco [49] is a network of an enterprise with Cisco PIX fire-
wall with 12 devices and 10 switches.

tunnel over a 10GbE WAN link. We vary the WAN latency to em-
ulate connections between sites in the same city (WashingtonDC↔
WashingtonDC, 1 ms), same region (WashingtonDC↔NY, 11.2 ms), and
across the Atlantic (WashingtonDC↔Copenhagen(CP), 105 ms). These
latency values come from WonderNetwork’s global ping stats [47],
and the specific cities were chosen so that the latencies were roughly
round numbers an order of magnitude apart. Within sites, we use
the same topologies used in prior work [4], shown in Figure 6.
Emulated Network Traffic: To measure overhead in cross-site
communication, we program hosts to connect to other hosts only
at other sites (no intra-site communication). For the Cisco topology,
we initiate connections between all multi-site pairs of hosts. For the
MiniStanford topology, we randomly select hosts to connect across
sites to create a total of 1000 simultaneous flows. 1000 flows was
the empirically determined safe limit of our experiment hardware
before CPU contention of the host VM affected latencies.
System Configuration: Similar to prior work [10, 21], we use a
Docker container for each site. Within each container, an ONOS
SDN controller manages an SDN network emulated by Mininet [44].
Our experiments spawned these containers on a VM on a server-
class host with a AMD EPYC 7302P processor. The VM ran Ubuntu
20.04 LTS (Linux Kernel 5.4.0) and had 15 cores and 235 GB RAM.
In all experiments, we measured latency using ping and throughput
using perf3 (version 3.7). Each experiment ran for 60 seconds and
was repeated 20 times. We present the average over these runs.
Before each run, we clear the ONOS controller of any flow rules to
establish a repeatable, “clean-slate” measurement. We start with a
single flow, introducing a new flow every 100 ms.

7.2 MSNetViews Overhead
We compare MSNetViews with standard intent forwarding (ifwd)
and NetViews [4]. ifwd serves as a baseline of minimum network
performance without the effects of MSNetViews. Our comparison
with NetViews demonstrates multisite scalability. For these experi-
ments, there are no roaming or policy update events. Hence, the
overhead comes from installing the SDN rules. As MSNetViews

uses reactive SDN, forwarding rules are installed only when trig-
gered by first packet of a new flow resulting higher overhead of
the first packet than subsequent packets [4]. Our goal is to show
that MSNetViews performs similar to NetViews, indicating minimal
overhead for adding multisite functionality.

For all studied WAN latencies, the 1𝑠𝑡 -packet latency overhead
of MSNetViews over NetViews remained well under 1.2% for Cisco
and 2.5% for Ministanford (see Figure 7a). When compared to ifw-

d on same-city (DC↔DC) traffic, MSNetViews increased 1𝑠𝑡 -packet
latency by 7 ms (≈5x) on the MiniStanford topology and by 9.6 ms
(≈4x) on Cisco (see Figure 7a). In the same region (DC↔NY) , the
measured overhead compared to ifwdwas 5.8 ms to 7.5 ms (49.1% to
54.5%), and for the global scale (DC↔CP) , the overhead compared to
ifwd was 6 ms to 7.3 ms (5.7% to 6.8%) across the two topologies. As
the sites move further apart, the overhead decreases proportionately
as the WAN latency dominates. Furthermore, latency overhead is
limited to the 1𝑠𝑡 -packet only and does not propagate to subsequent
packets (Figure 7b). The 𝑛𝑡ℎ-packet latencies for NetViews, ifwd,
and MSNetViews is similar, with a small overhead (< 0.025 ms).

Figure 8 shows throughput results for DC↔DC and DC↔CP. For
both cases, MSNetViews and NetViews are comparable, with a
difference of less than 1% in the median for both Cisco and Min-
istanford topologies (Figure 8). For ifwd in the DC↔DC case with the
Cisco topology, the median MSNetViews throughput falls within
the inter-quartile ratio of ifwd and the difference in medians is
under 1% (Figure 8). For DC↔DC with the MiniStanford topology,
MSNetViews’s median aggregate throughput is approximately≈150
Mbps below ifwd, a 5.3% decrease (Figure 8). For DC↔CP, the median
MSNetViews throughput falls within the inter-quartile ratio of ifwd
for both topologies. The results suggest that MSNetViews does not
reduce network throughput compared to NetViews and ifwd.

7.3 Post-Roaming Stabilization
When a user roams to a new site, both local and global policy
updates occur (Section 4). We measured the time for the policy
state in all sites to stabilize to a consistent state after a user location
is updated. For a worst-case estimate, we evaluated post-roaming
stabilization for the global scale scenario (DC↔CP), which has the
longest inter-site latency. Note that updates use NGAC obligations;
hence do not invoke the policy checker or policy slicer.

We define location update time as the time difference between
when the roaming user ⟨𝐴𝑙𝑖𝑐𝑒, 𝐿1⟩ starts the authentication process
at a new site, 𝑦, and when a location and identity update has been
triggered in all 𝑛 relevant sites of the enterprise (steps 1 and 3 , in
Figure 1). This measurement is the worst-case time for the user’s
location to be consistent at any relevant site.

We studied the impact of two factors on the location update time:
(1) the number of relevant sites in the enterprise, and (2) the number
of roaming users concurrently authenticating to a new site. For
these experiments, we considered the MiniStanford topology.
Relevant Sites:We emulated moving a single user from one site
to another, and varied number of relevant sites in the enterprise
exponentially from 2 through 16. As shown in Figure 9a, the time to
complete the roaming process remained under 1.5 s across all cases.
This time is only experienced when the user needs to access non-
local resources (resources at other sites) immediately after joining
a new site. When accessing local resources, users need not wait for
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Figure 7: Average end-to-end packet latency for MSNetViews, NetViews [4], and ifwd under three WAN latencies between sites:
(1) same city (WashingtonDC↔WashingtonDC), same region (WashingtonDC↔NY), and global (WashingtonDC↔Copenhagen(CP)).

Figure 8: Aggregate throughput for MSNetViews, NetViews,
and ifwd under two WAN latencies between sites: (1) same
city (WashingtonDC↔WashingtonDC), and global (WashingtonDC↔C-

openhagen(CP)). The scales differ for readability.

the update to propagate through the enterprise. This time is small
and has minimal impact on user experience (impact is similar to
that of refreshing a page on a web browser).
Roaming Users: In this experiment, we restricted the number of
sites to two, and exponentially varied the number of users moving
between sites from 2 through 32. Figure 9b show the average loca-
tion update time for each set of roaming users. The median update
time for all users remained under 1.5 seconds, which is minimal
impact for users joining a network after roaming from another site
Finally, location updates can also be batched to support many more
simultaneous location update events.

7.4 Policy Update Performance
Administrative updates to the global policy trigger two operations
that impact performance: (1) checking the policy for syntax errors—
an operation performed by the policy checker (Section 6.2)—and
(2) computing the new policy slices (Section 5)—an operation per-
formed by the policy slicer. Note that, the above mentioned opera-
tions are not initiated for a user roaming events.
Methodology: We evaluate the performance of global manager
in the event of administrative policy update by experimenting indi-
vidually on the policy checker and policy slicer components. We
used the policy graph of the MiniStanford topology for five com-
ponent sites, with a host count varied within the range of 100 to
10000. We run this experiment in the same VM host as our previous
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Figure 9: Effect of number of roaming users and number of
relevant sites on average location update time per user for
users roaming globally (between WashingtonDC↔Copenhagen(C-

P)). Update events are not batched.

experiments. To generate self-consistent policies, we rely on the
random policy creation algorithm as in prior works [4, 33]. This
algorithm creates a binary tree-like connectivity among host nodes
(user-device pairs and objects) and policy elements. The height
of the policy graph (binary tree) and host nodes determines the
policy graph complexity (number of policy nodes). The number of
policy nodes is determined by calculating (2ℎ+1 − 1) × 𝑛, where 𝑛
is the number of hosts and ℎ is the height of the policy graph. The
maximum value of the graph height was two for our experiments.

We created a policy variant generator, which can create graph
variations from a supplied base policy graph using one or more
randomly selected update operations. We considered ten types of
update operations among possible fourteen types (e.g., add user
node, delete association). We avoided the delete operation on at-
tribute nodes and assignment relations for the ease of experiment,
as these delete operations can produce a disconnected policy graph.
Finally, we generated 50 policy variants of each type of update
operation for each run.
Results: As shown in in Table 2, the policy graph complexity
is a significant factor in policy checking and slicing delay. This
is expected because the policy checking and slicing algorithms
traverse the policy at-least twice. Note that this experiment uses
the worst-case algorithm (binary tree) for policy generation.

Shown in Table 2, the average delays for both the policy checker
and slicer follow similar trends and are marginal even for a signifi-
cant policy graph with 10,000 host nodes and 30,000 policy nodes
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Table 2: Effect of Policy Graph Complexity on Average Policy
Checking and Slicing Delay

Host No. Policy Node No. Average Delay (ms)
Policy Checker Policy Slicer

100 300 3 6
100 700 6 9
1000 3000 25 38
1000 7000 62 81
4000 12000 151 189
4000 28000 452 516
7000 21000 388 428
7000 49000 1153 1024
10000 30000 654 688
10000 70000 2441 1883

(0.64 seconds and 0.68 seconds, for checking and slicing, respec-
tively). We also analyzed if the operation types affect the policy
update overhead. The standard deviation for the 10 operation types
varies from 6 to 10 ms, and for policy slicing it varies from 25 to 35
ms for different numbers of host and policy nodes.

For each update, MSNetViews regenerates policy slices; however,
it is not necessary to generate new slices for sites unimpacted by
the change (Section 5.3). On average, policy slicing occupies 30%
to 40% of the total delay; the rest of the time is needed to load the
new policy graph and find the differences from the base graph.

8 MSNETVIEWS AND ZERO TRUST
NIST defines ten “Network Requirements to Support ZTA” in Sec-
tion 3.4.1 of their special article on Zero Trust Architecture [40].
MSNetViews satisfies all but two of the ten requirements. One of
these requirements out-of-scope: NIST states enterprise resources
should be accessible without needing to traverse enterprise net-
work infrastructure. While this applies to business applications, the
on-premises devices protected by MSNetViews cannot be moved
off-premises. MSNetViews partially addresses the second require-
ment it fails to satisfy, which states “the enterprise must be able
to distinguish between what assets are owned or managed by the
enteprise and the devices’ current security posture.” MSNetViews
does capture which devices are managed by the enterprise; however,
it does not incorporate the current security posture of devices. Ex-
isting zero trust solutions accomplish this requirement using device
attestation and behavioral analytics. Such information can be incor-
porated into MSNetViews’s policy decision and is a straightforward
engineering effort for future work.

9 RELATEDWORK
Enterprise Access Control: Enterprises seeking to establish least
privilege access control require well-defined policy definitions. Tra-
ditionally, role- and group-based policy definitions have been used
to simplify policy management and model user requirements (e.g.,
Ethane [12], CISCO DNA [14]). However, these prior systems do
not capture modern enterprise requirements like dynamic policy
definition, multi-context access control, or encoding enterprise con-
figuration [41, 42]. To address these limitations, attribute-based
access control (ABAC) [26] and several extensions (e.g., NGAC [15],
XACML [18]) were proposed. These enabled granularity and context-
awareness, however, most of these approaches consider file-based
resources and web services.

Firewalls [13] form the foundation of traditional enterprise net-
work policy enforcement. Firewalls are hard to configure and main-
tain [48], and even stateful firewalls are prone to vulnerabilities [30].
Without a unified solution, administrators are forced to maintain en-
terprise security in piecemeal (e.g., VLAN, middle-boxes [49], next
generation firewall [36], intrusion detection systems [43]). Some
systems combine different state-of-the-art technologies (e.g., SDN)
to provide isolation (e.g., PSI [49] or micro-segmentation [23]).

Modern enterprise network security lacks a definitive, context-
aware, and granular access control solution. Some solutions pro-
vide system support for dynamic policy enforcement with non-
existent [12, 35, 49] or non-scalable [28] policy definitions. Several
efforts have recognized that the ease of creating, testing, and en-
forcing access control policies [14, 29] is vital for network security.
However, the policy enforcement of these efforts relies primarily on
traditional network segmentation or micro-segmentation for fire-
wall placement. Furthermore, other systems address context-aware
access control considering different dynamic aspects (e.g., location,
identity) of the enterprise [24]. Recently, Anjum et al. [4] proposed
a system designed to handle user contexts of enterprise networks;
this includes the use of NGAC-supported [15] least-privilege access
control by leveraging reactive SDN for policy enforcement.
Zero Trust Architecture (ZTA): ZTA is becoming the gold stan-
dard of enterprise security, where no trust between any entities is
assumed unless explicitly specified [40]. Google’s BeyondCorp [46]
has led the industry conversation on Zero Trust, which has inspired
subsequent efforts including Software Defined Perimeters (SDP) by
the Cloud Security Alliance [34] and BastionZero [50]. Academic
literature also leveraging ZTA concepts for secure network envi-
ronments (e.g., server-to-server access in PagerDuty [16], access
control for 5G networks [7]). However, most ZTA efforts concen-
trate on web applications and require all assets to be moved to the
cloud. How ZTA can be incorporated in securing the on-premises
entities remains an open question.
Software Defined Networking (SDN): Reactive SDN with a pro-
grammable switch architecture [8, 9] and high-level programming
languages [45] has the potential to address many enterprise access
control issues [31]. Although research has identified attacks against
SDN technologies [11, 51], it can replace conventional security com-
ponents through providing granular flow analysis [37] and defense
techniques [5]. SDN has the potential to simplify enterprise policy
enforcement [4], and provide software defined perimeters [23, 34].

10 CONCLUSION
Increased interest in zero trust architectures is changing the decades-
old “mote-and-gate” approach to enterprise network security.While
reactive SDN technologies provide a promising foundation for real-
izing zero trust goals within on-premises enterprise networks, they
are limited to single networks, requiring enterprises with multiple
sites to manually ensure consistency of security policy across all
sites. This paper presented MSNetViews, an system that extends a
single, globally-defined and managed, enterprise network security
policy to many geographically distributed sites. Each site operates
independently and enforces a site-specific policy slice that is dy-
namically parameterized with user location as employees roam
between sites. In presenting MSNetViews, we demonstrate that

131



SACMAT ’23, June 7–9, 2023, Trento, Italy Iffat Anjum et al.

SDN can not only provide an invaluable primitive for achieving
zero trust within a single enterprise location, but also across many
geographically distributed locations.
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