
Security

Unit 14

CS 3650 Computer Systems – Summer 2025

* Acknowledgements: created based on Christo Wilson’s lecture slides for the same course.

•Authentication

•Access Control

2

3

Authentication

• Authentication is the process of verifying an actor’s identity

• Critical for security of systems
• Permissions, capabilities, and access control are all contingent

upon knowing the identity of the actor

• Typically parameterized as a username and a secret
• The secret attempts to limit unauthorized access

4

Types of Secrets

• Actors provide their secret to log-in to a system

• Three classes of secrets:
1. Something you know

• Example: a password

2. Something you have
• Examples: a smart card or smart phone

3. Something you are
• Examples: fingerprint, voice scan, iris scan

5

Checking Passwords

• The system must validate passwords provided by users

• Thus, passwords must be stored somewhere

• Basic storage: plain text

6

cbw p4ssw0rd
sandi i heart doggies
amislove 93Gd9#jv*0x3N
bob security

password.txt

Problem: Password File Theft

• Attackers often compromise systems

• They may be able to steal the password file
• Linux: /etc/shadow

• Windows: c:\windows\system32\config\sam

• If the passwords are plain text, what happens?
• The attacker can now log-in as any user, including

root/administrator

• Passwords should never be stored in plain text

7

Hashed Passwords
• Key idea: store encrypted versions of passwords

• Use one-way cryptographic hash functions
• Examples: md5, sha1, sha256, sha512

• Cryptographic hash function transform input data into scrambled output
data
• Deterministic: hash(A) = hash(A)
• High entropy:

• md5(‘security’) = e91e6348157868de9dd8b25c81aebfb9
• md5(‘security1’) = 8632c375e9eba096df51844a5a43ae93
• md5(‘Security’) = 2fae32629d4ef4fc6341f1751b405e45

• Collision resistant
• Locating A’ such that hash(A) = hash(A’) takes a long time
• Example: 221 tries for md5

8

Hashed Password Example

9

cbw 2a9d119df47ff993b662a8ef36f9ea20
sandi 23eb06699da16a3ee5003e5f4636e79f
amislove 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: cbw

md5(‘p4ssw0rd’) =
2a9d119df47ff993b662a8ef36f9ea20

md5(‘2a9d119df47ff993b662a8ef36f9ea20’)
= b35596ed3f0d5134739292faa04f7ca3

Attacking Password Hashes

• Recall: cryptographic hashes are collision resistant
• Locating A’ such that hash(A) = hash(A’) takes a very long time

• Are hashed password secure from cracking?
• No!

• Problem: users choose poor passwords
• Most common passwords: 123456, password

• Username: cbw, Password: cbw

• Weak passwords enable dictionary attacks

10

Dictionary Attacks

• Common for 60-70% of hashed passwords to be cracked in <24
hours

11

English
Dictionary

Common
Passwords

List of
possible

password
hashes

hashed_
password.txt

Hardening Password Hashes

• Key problem: cryptographic hashes are deterministic
• hash(‘p4ssw0rd’) = hash(‘p4ssw0rd’)

• This enables attackers to build lists of hashes

• Solution: make each password hash unique
• Add a salt to each password before hashing

• hash(salt + password) = password hash

• Each user has a unique, random salt

• Salts can be stores in plain text

12

Example Salted Hashes

13

cbw a8 af19c842f0c781ad726de7aba439b033
sandi 0X 67710c2c2797441efb8501f063d42fb6
amislove hz 9d03e1f28d39ab373c59c7bb338d0095
bob K@ 479a6d9e59707af4bb2c618fed89c245

hashed_and_salted_password.txt

cbw 2a9d119df47ff993b662a8ef36f9ea20
sandi 23eb06699da16a3ee5003e5f4636e79f
amislove 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

Password Storage on Linux

14

username:password:last:may:must:warn:expire:disable:reserved

cbw:a8ge08pfz4wuk:9479:0:10000::::
amislove:hz560s9vnalh1:8172:0:10000::::

/etc/shadow

username:x:UID:GID:full_name:home_directory:shell

cbw:x:1001:1000:Christo Wilson:/home/cbw/:/bin/bash
amislove:1002:2000:Alan Mislove:/home/amislove/:/bin/sh

/etc/passwd

First two characters
are the salt

Attacking Salted Passwords

15

hash()

List of
possible

password
hashes

hashed_
and_salted_
password.txt

No matches

hash(‘a8’ + word)

List of
possible

password
hashes w/

salt a8

List of
possible

password
hashes w/

salt 0X

cbw a8
sandi 0X
amislove hz
bob K@

hash(‘0X’ + word)
cbw XXXX

sandi YYYY

Breaking Hashed Passwords

• Stored passwords should always be salted
• Forces the attacker to brute-force each password individually

• Problem: it is now possible to compute cryptographic hashes
very quickly
• GPU computing: hundreds of small CPU cores

• nVidia GeForce GTX Titan Z: 5,760 cores

• GPUs can be rented from the cloud very cheaply
• 2x GPUs for $0.65 per hour (2014 prices)

16

Examples of Hashing Speed (2014)

• A modern x86 server can hash all possible 6 character long passwords
in 3.5 hours
• Upper and lowercase letters, numbers, symbols

• (26+26+10+32)6 = 690 billion combinations

• A modern GPU can do the same thing in 16 minutes

• Most users use (slightly permuted) dictionary words, no symbols
• Predictability makes cracking much faster

• Lowercase + numbers → (26+10)6 = 2B combinations

17

Hardening Salted Passwords

• Problem: typical hashing algorithms are too fast
• Enables GPUs to brute-force passwords

• Solution: use hash functions that are designed to be slow
• Examples: bcrypt, scrypt, PBKDF2

• These algorithms include a work factor that increases the time
complexity of the calculation

• scrypt also requires a large amount of memory to compute, further
complicating brute-force attacks

18

bcrypt Example

• Python example; install the bcrypt package

19

[cbw@ativ9 ~] python
>>> import bcrypt
>>> password = “my super secret password”
>>> fast_hashed = bcrypt.hashpw(password, bcrypt.gensalt(0))
>>> slow_hashed = bcrypt.hashpw(password, bcrypt.gensalt(12))
>>> pw_from_user = raw_input(“Enter your password:”)
>>> if bcrypt.hashpw(pw_from_user, slow_hashed) == slow_hashed:
… print “It matches! You may enter the system”
… else:
… print “No match. You may not proceed”

Work factor

Password Storage Summary

1. Never store passwords in plain text

2. Always salt and hash passwords before storing them

3. Use hash functions with a high work factor

• These rules apply to any system that needs to authenticate
users
• Operating systems, websites, etc.

20

Password Recovery/Reset

• Problem: hashed passwords cannot be recovered

21

“Hi… I forgot my password. Can
you email me a copy? Kthxbye”

• This is why systems typically implement password
reset

– Use out-of-band info to authenticate the user

– Overwrite hash(old_pw) with hash(new_pw)

•Authentication

•Access Control

22

Status Check

• At this point, we can authenticate users
• And we are securely storing their password

• How do we control what users can do, and what they can access?

23

Simple Access Control

• Basic security in an OS is based on access control

• Simple policies can be written as an access control matrix
• Specifies actions that actors can take on objects

• Unix actions: read, write and execute

• For directories, x → traverse

24

file 1 file 2 dir 1 file 3

user 1 --- r-- --- rw-

user 2 r-- r-- rwx r--

user 3 r-- r-- --- ---

user 4 rw- rwx --- ---

Users and Groups on Unix

• Actors are users, each user has a unique ID
• Users also belong to >=1 groups

25

cbw:x:13273:65100:Christo Wilson:/home/cbw/:/bin/bash

/etc/passwd

[cbw@finalfight ~] id cbw
uid=13273(cbw) gid=65100(faculty) groups=65100(faculty),
1314(cs5700f13),1316(cs5750f13),1328(cs5600sp13)

File Permissions on Unix

• Files and directories have an owner and a group

• Three sets of permissions:
1. For the owner

2. For members of the group

3. For everybody else (other)

26

[cbw@finalfight ~] ls -lh
-rw-r--r-- 1 cbw faculty 244K Mar 2 13:01 pintos.tar.gz
drwxr-xr-- 3 cbw faculty 4.0K Mar 2 13:01 pintos

File or directory?

Owner permissions

Group permissions

Number of links

Owner Group

Permission Examples

cbw:faculty

• May read both objects

• May modify the file

• May not execute the
file

• May enter the directory

• May add files to the
directory

• May modify the
permissions of both
objects

amislove:faculty

• May read both objects

• May not modify the file

• May not execute the
file

• May enter the directory

• May not add files to the
directory

• May not modify
permissions

27

[cbw@finalfight ~] ls -lh
-rw-r--r-- 1 cbw faculty 244K Mar 2 13:01 pintos.tar.gz
drwxr-xr-- 3 cbw faculty 4.0K Mar 2 13:01 pintos

bob:student

• May read both objects

• May not modify the file

• May not execute the
file

• May not enter the
directory

• May not add files to the
directory

• May not modify
permissions

Modifying Permissions

• Users may only modify the permissions of files they own

29

[cbw@finalfight ~] ls -lh

-rw------- 1 amislove faculty 5.1K Jan 23 11:25 alans_file
-rw------- 4 cbw faculty 3.5K Jan 23 11:25 christos_file

[cbw@finalfight ~] chmod ugo+rw alans_file

chmod: changing permissions of `alans_file': Operation not permitted
[cbw@finalfight ~] chmod go+r christos_file

[cbw@finalfight ~] chmod u+w christos_file
[cbw@finalfight ~] chmod u-r christos_file

[cbw@finalfight ~] ls -lh

-rw------- 1 amislove faculty 5.1K Jan 23 11:25 alans_file
--wxr--r-- 4 cbw faculty 3.5K Jan 23 11:25 christos_file

u – user
g – group
o - other

+ add permissions
- remove permissions

= set permissions

r – read
w – write

x - executable

Modifying Users and Groups

• Users may not change the owner of a file*
• Even if they own it

• Users may only change to a group they belong to

31

[cbw@finalfight ~] id cbw
uid=13273(cbw) gid=65100(faculty) groups=65100(faculty),
1314(cs5700f13),1316(cs5750f13),1328(cs5600sp13)
[cbw@finalfight ~] ls -lh
-rw------- 4 cbw faculty 3.5K Jan 23 11:25 christos_file
[cbw@finalfight ~] chown cbw:cs5600sp13 christos_file
[cbw@finalfight ~] ls -lh
-rw------- 4 cbw cs5600sp13 3.5K Jan 23 11:25 christos_file

* unless you are root

Permissions of Processes

• Processes also have permissions
• They have to, since they read files, etc.

• What is the user:group of a process?
1. The user:group of the executable file?

2. The user:group of the user running the process?

• Processes inherit the credentials of the user who runs them
• Child processes inherit their parent's credentials

32

*

* except when the program is setuid

Privileged Operations

• Other aspects of the OS may also require special privileges

• Fortunately, on Unix most aspects of the system are represented
as files
• E.g. /dev contains devices like disks
• Formatting a disk requires permissions to /dev/sd*

• Processes may only signal other processes with the same user
ID*
• Otherwise, you could send SIGKILL to other user’s processes

33* unless the process is root

The Exception to Every Rule

• On Unix, the root user (ID=0) can do whatever it wants
• Access any file

• Change any permission

• On Windows, called the Administrator account

• Your everyday user account should never be Admin/root

34

Ways to Access Root

• Suppose you need to run a privileged command
• Example: $ apt-get install python

• How can you get root privileges?
1. Log in as root

• $ ssh root@mymachine.ccs.neu.edu

2. The Switch User command (su)
• $ su

• Opens a new shell with as root:root

3. The Switch User Do Command (sudo)

• $ sudo apt-get install python

• Runs the given command as root:root

35

36

Set Effective User ID

• In some cases, you may need a program to run as the file owner,
not the invoking user

• Imagine a command-line guessing game
• Users may input numbers as guesses

• The user should not be able to read the file with the correct answers

• Program must check if guesses are correct

• The program must be able to read the file with correct answers

37

setuid example

38

[cbw@finalfight game] ls -lh
-rw------- 1 amislove faculty 180 Jan 23 11:25 secrets.txt
-rwsr-sr-x 4 amislove faculty 8.5K Jan 23 11:25 guessinggame
[cbw@finalfight game] cat secrets.txt
cat: secrets.txt: Permission denied
[cbw@finalfight game] ./guessinggame 4 8 15 16 23 42
Sorry, none of those number are correct :(
[cbw@finalfight game] ./guessinggame 37
Correct, 37 is one of the hidden numbers!

Game executable is setuid

How to setuid

• Be very careful with setuid
• You are giving other users the ability to run a program as you, with

your privileges

• Programs that are setuid=root should drop privileges
• Google “setuid demystified” for more info

39

[cbw@finalfight tmp] gcc –o my_program my_program.c
[cbw@finalfight tmp] ls -lh
-rwxr-xr-x 1 cbw faculty 2.3K Jan 23 11:25 my_program
[cbw@finalfight tmp] chmod u+s my_program
[cbw@finalfight tmp] ls -lh
-rwsr-xr-x 1 cbw faculty 2.3K Jan 23 11:25 my_program

setuid and scripts

40

[cbw@finalfight tmp] ls -lh
-rwsr-xr-x 1 cbw faculty 2.3K Jan 23 11:25 server.py
[cbw@finalfight tmp] ./server.py

• Steps to run a setuid script

1. Kernel checks setuid bit of the script

2. Kernel loads the interpreter (i.e.
python) with setuid permissions

3. Interpreter executes the script

• Never set a script as setuid

Replace
server.py with
modified, evil

script

This is known as a TOCTOU vulnerability:
Time-Of-Check, Time-of-Use

Limitations of the Unix Model

• The Unix model is very simple
• Users and groups, read/write/execute

• Not all possible policies can be encoded

41

• file 1: two users have high
privileges

– If user 3 and user 4 are in a group,
how to give user 2 read and user 1
nothing?

file 1 file 2

user 1 --- rw-

user 2 r-- r--

user 3 rw- rwx

user 4 rw- ---

• file 2: four distinct privilege levels

– Maximum of three levels (user, group, other)

Access Control Lists

• ACLs are explicit rules that grant or deny permissions to users
and groups
• Typically associated with files as meta-data

42

file 1 file 2

user 1 --- rw-

user 2 r-- r--

user 3 rw- rwx

user 4 rw- ---

• file 1: owner = user 4,
group = {user 4, user 3}

owner: rw- group: rw-

user 2: r-- other: ---

• file 2: owner = user 3, group = {user 3, user 1}
owner: rwx group: rw-

user 2: r-- other: ---

More ACLs

43

• OSX and some
versions of Linux
also support ACLs

API Permissions

• On Android, apps need permission to
access some sensitive API calls

• Android is based on Linux

• Behind the scenes, each app is given
its own user and group

• Kernel enforces permission checks
when system calls are made

44

Exploits and Exploit Prevention

45

•Basic Program Exploitation

•Protecting the Stack

•Advanced Program Exploitation

•Defenses Against ROP

46

Setting the Stage

• Suppose I really want to see the secret answers
• But I’m not willing to play the game

• How can I run arbitrary code as amislove?
• If I could run code as amislove, I could read secrets.txt

• Example: execvp(“/bin/sh”, 0);

47

[cbw@finalfight game] ls -lh
-rw------- 1 amislove faculty 180 Jan 23 11:25 secrets.txt
-rwsr-sr-x 4 amislove faculty 8.5K Jan 23 11:25 guessinggame

Game executable is setuid

Looking for Vulnerabilities

• Code snippet for guessinggame

char buf[8];

for (int x = 1; x < argc; ++x) {

 strcpy(buf, argv[x]);

 num = atoi(buf);

 check_for_secret(num);

}

48

Stack buffer overflow

Confirmation

49

[cbw@finalfight game] ls -lh
-rw------- 1 amislove faculty 180 Jan 23 11:25 secrets.txt
-rwsr-sr-x 4 amislove faculty 8.5K Jan 23 11:25 guessinggame
[cbw@finalfight game] ./guessinggame 1 2 3
Sorry, none of those number are correct :(
[cbw@finalfight game] ./guessinggame AAAAAAAAAAAAAAAAAAAAAAA
Sorry, none of those number are correct :(
Segmentation fault (core dumped)

(gdb) bt
#0 0x0000000000400514 in myfunc ()
#1 0x4141414141414141 in ?? ()
#2 0x4141414141414141 in ?? ()
#3 0x4141414141414141 in ?? ()
#4 0x0000004141414141 in ?? ()

‘A’ = 0x41 in ASCII

Stuff from
previous frame

Exploiting Stack Buffer Overflows

• Preconditions for a successful
exploit

1. Overflow is able to
overwrite the return
address

2. Contents of the buffer are
under the attackers control

50

int x

char buf[8]

int num

return address

Stack

ESP - 20

ESP - 16

ESP - 12

ESP - 8

ESP

Malicious assembly
instructions

execvp(“/bin/sh”, 0);

Address of assembly

Garbage

Exploitation, Try #1

• Problem: how do you know the address of the shellcode on the
stack?
• To execute the shellcode, you have to return to its exact start

address

• This is a small target

51

[cbw@finalfight game] ./guessinggame [16-bytes of
garbage][4-byte stack pointer][evil shellcode assembly]
Segmentation fault (core dumped)

This is not what we want :(

NOP Sled

• To execute the shellcode, you
have to return to its exact
start address

• You can increase the size of
the target using a NOP sled
(a.k.a. slide, ramp)

52

Stuff from
previous frame

int x

char buf[8]

int num

return address

Stack

ESP - 20

ESP - 16

ESP - 12

ESP - 8

ESP

Malicious assembly
instructions

execvp(“/bin/sh”, 0);

Address of assembly

Garbage

NOP sled

Full of 0x90
(NOP x86 instructions)

Exploitation, Try #2

• There is a lot more to writing a successful exploits
• Depending on the type of flaw, compiler countermeasures, and

OS countermeasures

• If you like this stuff, take a security course

53

[cbw@finalfight game] ./guessinggame [16 bytes of
garbage][4 byte stack pointer][2048 bytes of 0x90][evil
shellcode assembly]
$

./guessinggame ran the shellcode,
turned into /bin/sh

Types of Exploitable Flaws

• Stack overflow

• Heap overflow
char * buf = malloc(100);

strcpy(buf, argv[1]);

• Double free
free(buf);

free(buf);

54

• Format string
printf(argv[1]);

• Off-by-one
int vectors[100];
for (i = 0; i <= 100; i++)

vector[i] = x;

• … and many more

Triggering Exploitable Flaws

• Local vulnerabilities:
• Command line arguments

• Environment variables

• Data read from a file

• Date from shared memory or pipes

• Remote vulnerabilities
• Data read from a socket

• Basically, any place where an
attacker can give input to your
process

55

Attacker can inject code
into your machine via the

Internet

Leveraging an Exploit

• After a successful exploit, what can the attacker do?
• Anything the exploited process could do

• The shellcode has full API access

• Typical shellcode payload is to open a shell
• Remote exploit: open a shell and bind STDIN/STDOUT to a socket

(remote shell)

• If process is uid=root or setuid=root, exploitation results in privilege
escalation

• If the process is the kernel, the exploit also results in privilege
escalation

56

•Basic Program Exploitation

•Protecting the Stack

•Advanced Program Exploitation

•Defenses Against ROP

57

Defending Against Stack Exploits

• Exploits leverage programmer bugs
• Programmers are never going to write code that is 100% bug-free

• What can the system do to help prevent processes from being
exploited?

• Mechanisms that prevent stack-based exploits
• Stack canaries

• Non-executable stack pages (NX-bit)

58

The Canary in the Coal Mine

• Miners used to take canaries
down into mines

• The birds are very sensitive
to poisonous gases

• If the bird dies, it means
something is very wrong!

• The bird is an early warning
system

59

return address

Stack Canaries

• A stack canary is an early warning system
that alerts you to stack overflows

60

Stuff from
previous frame

int x

char buf[8]

int num

canary value

Stack

ESP - 20

ESP - 16

ESP - 12

ESP - 8

ESP

Malicious
shellcode

Pointer to sled

Garbage

NOP sled

ESP - 24

int canary = secret_canary;

char buf[8];

for (x = 1; x < argc; ++x) {

 strcpy(buf, argv[x]);

 num = atoi(buf);

 check_for_secret(num);

}

...

assert(canary==secret_canary);

return 0;

Automatically added by the compiler

Overflow destroys the
canary, assert fails,

program safely exits

Canary Implementation

• Canary code and data are inserted by the compiler
• gcc supports canaries

• Disable using the –fno-stack-protector argument

• Canary secret must be random
• Otherwise the attacker could guess it

• Canary secret is stored on its own page at semi-random location in
virtual memory
• Makes it difficult to locate and read from memory

61

Canaries in Action

62

[cbw@finalfight game] ./guessinggame AAAAAAAAAAAAAAAAAAAAAAA
*** stack smashing detected ***: ./guessinggame terminated
Segmentation fault (core dumped)

• Note: canaries do not prevent the buffer overflow

• The canary prevents the overflow from being exploited

When Canaries Fail

void my_func() { ... }

int canary = secret_canary;

void (*fptr)(void);

char buf[1024];

fptr = &my_func;

strcpy(buf, argv[1]);

fptr();

assert(canary==secret_canary);

return 0;

63

return address

fptr

char buf[1024]

canary value

Stack
ESP - 1036

ESP - 1032

ESP - 1028

ESP - 1024

ESP

Malicious
shellcode

Pointer to sled

NOP sled

Function pointer

Canary is
left intact

Calling fptr triggers
the exploit

ProPolice Compiler

• Security oriented compiler technique

• Attempts to place arrays above other
local variables on the stack

• Integrated into gcc

64

return address

fptr

char buf[1024]

canary value

Stack
ESP - 1036

ESP - 1032

ESP - 1028

ESP - 4

ESP

When ProPolice Fails

• The C specification states that
the fields of a struct cannot be
reordered by the compiler

65

void my_func() { ... }

struct my_stuff {

 void (*fptr)(void);

 char buf[1024];

};

int canary = secret_canary;

struct my_stuff stuff;

stuff.fptr = &my_func;

strcpy(stuff.buf, argv[1]);

stuff.fptr();

assert(canary==secret_canary);

return 0;

Non-Executable Stack

• Problem: compiler techniques cannot prevent all stack-based
exploits

• Key insight: many exploits require placing code in the stack and
executing it
• Code doesn’t typically go on stack pages

• Solution: make stack pages non-executable
• Compiler marks stack segment as non-executable

• Loader sets the corresponding page as non-executable

66

x86 Page Table Entry, Again

• On x86, page table entries (PTE) are 4 bytes

67

31 - 12 11 - 9 8 7 6 5 4 3 2 1 0

Page Frame Number (PFN) Unused G PAT D A PCD PWT U/S W P

• W bit determines writeable status

• … but there is no bit for executable/non-executable

• On x86-64, the most significant bit of each PTE (bit
63) determines if a page is executable

– AMD calls it the NX bit: No-eXecute

– Intel calls it the XD bit: eXecute Disable

When NX bits Fail

• NX prevents shellcode from being placed on the stack
• NX must be enabled by the process

• NX must be supported by the OS

• Can exploit writers get around NX?
• Of course ;)

• Return-to-libc

• Return-oriented programming (ROP)

68

•Basic Program Exploitation

•Protecting the Stack

•Advanced Program Exploitation

•Defenses Against ROP

69

Return to libc

• Example exploits thus far have leveraged
code injection

• Why not use code that is already available in
the process?

execvp(char * file, char ** argv);

return address

libc Library

Current stack
frame

0x007F0000

execvp()
0x007F0A82

0x007F0A82

Fake return addr

Ptr to string

“/bin/sh”

0

char * file

char ** argv

Parameters for a
call to execvp()

Stack Control = Program Control

• Return to libc works by crafting special stack frames and using
existing library code
• No need to inject code, just data onto the stack

• Return-oriented programming (ROP) is a generalization of
return to libc
• Why only jump to existing functions?
• You can jump to code anywhere in the program
• Gadgets are snippets of assembly that form a Turing complete

language
• Gadgets + control of the stack = arbitrary code execution power

71

•Basic Program Exploitation

•Protecting the Stack

•Advanced Program Exploitation

•Defenses Against ROP

72

Defending Against Return to libc

• Return to libc and ROP work by repeatedly
returning to known pieces of code
• This assumes the attacker knows the

addresses of this code in memory

• Key idea: place code and data at random
places in memory
• Address Space Layout Randomization (ASLR)

• Supported by all modern OSes

0

264-1

Code Region

Heap Region

Virtual Memory

Stack Region

Code

Heap

Code

Code

Heap
Heap

Stack

Stack

Stack

Randomizing Code Placement

• It’s okay for stack and heap to be placed
randomly
• Example: stack is accessed relative to ESP

• Problem: code is typically compiled
assuming a fixed load address

0

264-1

Process 1

Virtual Memory

Process 2

Addr of foo(): 0x000FE4D8

Addr of foo(): 0x0DEB49A3

Position Independent Code Example

• Modern compilers can produce Position Independent Code
(PIC)
• Also called Position Independent Executable (PIE)

75

int global_var = 20;

int func() { return 30; }

int main() {
 int x = func();
 global_var = 10;
 return 0;
}

004004af <func>:

004004bf <main>:
 4004bf: 55 push ebp
 4004c0: 48 89 e5 mov ebp, esp
 4004c3: 48 83 ec 10 sub esp, 0x10
 4004c7: e8 e8 ff ff ff call 4004b4 <func>
 4004cc: 89 45 fc mov [ebp-0x4], eax
 4004cf: c7 05 3f 0b 20 00 10 mov

 [eip+0x200b3f], 0x10
 4004d6: 00 00 00
 4004d9: b8 00 00 00 00 mov eax, 0x0
 4004de: c9 leave
 4004df: c3 ret

• e8 is the opcode for a relative function call
• Address is calculated as EIP + given value
• Example: 0x4004c7 + 0xffffffe8 = 0x4004af

Global data is accessed relative to EIP

Tradeoffs with PIC/PIE

• Pro
• Enables the OS to place the code and data segments at a random

place in memory (ASLR)

• Con
• Code is slightly less efficient

• Some addresses must be calculated

• In general, the security benefits of ASLR far outweigh the cost

76

When ASLR Fails

• ASLR is much less effective on 32-bit architectures
• Less ability to move pages around randomly

• May allow the attacker to brute-force the exploit

• Use a huge NOP sled
• If the sled is enormous, even a random jump will hit it

• Use heap spraying
• Technique that creates many, many, many copies of shellcode in

memory

• Attempts to fill all available heap memory

• Jump to a random address is likely to hit a copy

77

Exploitation Prevention Wrap-up

• Modern OSes and compilers implement many strategies to prevent
exploitation
• More advanced techniques exist and are under development

• Exploitation strategies are also becoming more sophisticated
• Just scratched the surface of attack strategies

• Bottom line: don’t write buggy code
• Compiler and OS techniques don’t fix bugs, they just try to prevent

exploitation
• Even minor flaws can be exploited

78

Strategies for Writing Secure Code

• Assume all external data is under the control of an attacker

• Avoid unsafe library calls
• strcpy(), memcpy(), gets(), etc.
• Use bounded versions instead, i.e. strncpy()

• Use static analysis tools, e.g. Valgrind

• Use a fuzzer
• Runs your program repeatedly with crafted inputs
• Designed to trigger flaws

• Use security best-practices
• Drop privileges, use chroot jails, etc.

79

•Basic Program Exploitation

•Protecting the Stack

•Advanced Program Exploitation

•Defenses Against ROP

80

Cybersecurity and Ethics

• Many laws govern
cybersecurity
• Designed to help prosecute

criminals
• Discourage destructive or

fraudulent activities

• However, these laws are broad
and often vague
• Easy to violate these laws

accidentally
• Security professionals must be

cautious and protect
themselves

• Cybersecurity raises complex
ethical questions
• When and how to disclose

vulnerabilities
• How to handle leaked data
• Line between observing and

enabling crime
• Balancing security vs.

autonomy

• Ethical norms must be
respected
• Rights and expectations of

individuals and companies
• Community best-practices

8
1

Other Topics in Security

• Attacks we have not studied

• Secure Hardware Technologies (TPM, TXT)

• Distributed System Security and Resilience

• Cryptocurrencies and smart contracts

• Protocol Security (wireless, SDN)

• Privacy and regulations

• Post-quantum cryptography

• Program analysis, fuzzing, and software testing

• Formal verification

• Mobile and IoT security

• Machine Learning for Security

• Adversarial Machine Learning

8
2

Five Things to Remember

83

1) Be Morally Ambitious

• There are many tech jobs out there

• Do something meaningful
- You'll have to work to find that thing

https://public-interest-tech.com/

84

2) Focus on the Problems

• You can't improve the world unless you are solving a problem

• Identifying the problem is the hard part
- This is most of research

• Specific technologies are just means to an end, not an end themselves

85

3) Stay Optimistic

• A lot of uncertainty in the world right now

• Nonetheless, it is a time for hope and action

• Great progress only happens in times of great need

86

4) Time is Life

• How you spend your time is
your life

"The time that passes belongs to
death."

 -- Seneca

87
https://en.wikipedia.org/wiki/Seneca_the_Younger#/media/File:Duble_herm
a_of_Socrates_and_Seneca_Antikensammlung_Berlin_07.jpg

Productivity Broadening Horizons

88

5) Read Books

	Slide 1: Security
	Slide 2
	Slide 3
	Slide 4: Authentication
	Slide 5: Types of Secrets
	Slide 6: Checking Passwords
	Slide 7: Problem: Password File Theft
	Slide 8: Hashed Passwords
	Slide 9: Hashed Password Example
	Slide 10: Attacking Password Hashes
	Slide 11: Dictionary Attacks
	Slide 12: Hardening Password Hashes
	Slide 13: Example Salted Hashes
	Slide 14: Password Storage on Linux
	Slide 15: Attacking Salted Passwords
	Slide 16: Breaking Hashed Passwords
	Slide 17: Examples of Hashing Speed (2014)
	Slide 18: Hardening Salted Passwords
	Slide 19: bcrypt Example
	Slide 20: Password Storage Summary
	Slide 21: Password Recovery/Reset
	Slide 22
	Slide 23: Status Check
	Slide 24: Simple Access Control
	Slide 25: Users and Groups on Unix
	Slide 26: File Permissions on Unix
	Slide 27: Permission Examples
	Slide 29: Modifying Permissions
	Slide 31: Modifying Users and Groups
	Slide 32: Permissions of Processes
	Slide 33: Privileged Operations
	Slide 34: The Exception to Every Rule
	Slide 35: Ways to Access Root
	Slide 36
	Slide 37: Set Effective User ID
	Slide 38: setuid example
	Slide 39: How to setuid
	Slide 40: setuid and scripts
	Slide 41: Limitations of the Unix Model
	Slide 42: Access Control Lists
	Slide 43: More ACLs
	Slide 44: API Permissions
	Slide 45: Exploits and Exploit Prevention
	Slide 46
	Slide 47: Setting the Stage
	Slide 48: Looking for Vulnerabilities
	Slide 49: Confirmation
	Slide 50: Exploiting Stack Buffer Overflows
	Slide 51: Exploitation, Try #1
	Slide 52: NOP Sled
	Slide 53: Exploitation, Try #2
	Slide 54: Types of Exploitable Flaws
	Slide 55: Triggering Exploitable Flaws
	Slide 56: Leveraging an Exploit
	Slide 57
	Slide 58: Defending Against Stack Exploits
	Slide 59: The Canary in the Coal Mine
	Slide 60: Stack Canaries
	Slide 61: Canary Implementation
	Slide 62: Canaries in Action
	Slide 63: When Canaries Fail
	Slide 64: ProPolice Compiler
	Slide 65: When ProPolice Fails
	Slide 66: Non-Executable Stack
	Slide 67: x86 Page Table Entry, Again
	Slide 68: When NX bits Fail
	Slide 69
	Slide 70: Return to libc
	Slide 71: Stack Control = Program Control
	Slide 72
	Slide 73: Defending Against Return to libc
	Slide 74: Randomizing Code Placement
	Slide 75: Position Independent Code Example
	Slide 76: Tradeoffs with PIC/PIE
	Slide 77: When ASLR Fails
	Slide 78: Exploitation Prevention Wrap-up
	Slide 79: Strategies for Writing Secure Code
	Slide 80
	Slide 81: Cybersecurity and Ethics
	Slide 82: Other Topics in Security
	Slide 83: Five Things to Remember
	Slide 84: Be Morally Ambitious
	Slide 85: 2) Focus on the Problems
	Slide 86: 3) Stay Optimistic
	Slide 87: 4) Time is Life
	Slide 88: 5) Read Books

