CS 3650 Computer Systems — Summer 2025

OS Kernels, Booting, xv6 (1)

Week 10

Northeastern
University * Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, Ji-Yong Shin and Alden Jackson’s lecture slides for the same course.

What is an Operating System?

e OS is software that sits between user programs and hardware

Hardware Operating

System

(e.g., mouse,
keyboard)

* OS provides interfaces to computer hardware

— User programs do not have to worry about details
 OSis aresource manager and control program

— Controls execution of user programs

— Decides between conflicting requests for hardware access

— Attempts to be efficient and fair

— Prevents errors and improper use

Northeastern
University

Many Different OSes

Windows *

AL L L L LY
A A\ L LN\ Y
L UNTU NN GNTY

LN S U G S WY
A 332000

Without an operating system

* Life would be hard for us as software engineers having to always
directly interface with hardware, and vice versa

* (Typically our computers, would be no better than a box with
blinking lights)

Northeastern
University

Be grateful this isn't your IDE!

PROT MEMR our HLTA STACK

SENSE SW. —\:5 2

EXAMINE DEPOSIT RESET PROTECT
- -~ ™~

EXA ' 'NE DEP O SIT c.A UNPR “ECT
NE « | NE » 7

ALTAIR S800 COMPUTER

Northeastern 5
University

Operating System History

Northeastern
University

Brief Operating System History [link]

e 1955 and earlier: Very early mainframes have no operating system
e 1956: GM-NAA |/O used for research by General Motors -- first real

e 1960s: IBM delivers System/360 OS »

e Details recounted in
Mythical Man Month Book

4
y.
A

* 1970-80s: Digital Equipment Corporation (DEC) and Data General

(DG) lead the minicomputer market
e Data General’s initial design detailed in The Soul of a New Machine

* There is no reason anyone would want a computer in their home. --
Ken Olsen, Founder and CEO of DEC

Northeastern
University

https://en.wikipedia.org/wiki/History_of_operating_systems
https://en.wikipedia.org/wiki/GM-NAA_I/O
https://en.wikipedia.org/wiki/GM-NAA_I/O
https://en.wikipedia.org/wiki/GM-NAA_I/O
https://en.wikipedia.org/wiki/IBM_System/360
https://en.wikipedia.org/wiki/IBM_System/360
https://en.wikipedia.org/wiki/The_Mythical_Man-Month
https://en.wikipedia.org/wiki/The_Soul_of_a_New_Machine

Brief Operating System History [link]

e 1981: IBM releases a Personal Computer (PC) to compete with
Apple
 Basic Input/Output System (BIOS) for low-level control
* Three high-level OSes, including MS-DOS
* Developers were asked to write software for DOS or BIOS, not bare-
metal hardware

e 1982: Compaq and others release IBM-compatible PCs
 Different hardware implementations (except 808x CPU)
* Reverse engineered and reimplemented BIOS
* Relied on customized version of MS-DOS

................
8. 8.5 t.ﬂu.s'.

Northeastern 8
University

https://en.wikipedia.org/wiki/History_of_operating_systems

IBM Eventually Loses Control

* 1985: IBM clones dominated computer sales - . ‘: -y 3

* Used the same underlying CPUs Eﬁi ms,.: —
and hardware chips

* Close to 100% BIOS compatibility
 MS-DOS was ubiquitous
 Thus, IBM PC hardware became the de-facto standard

e 1986: Compagqg introduces 80386-based PC

e 1990’s: Industry is dominated by “WinTel” (Microsoft and Intel)
* Intel x86 CPU architectures (Pentium 1, 2, and 3)
 Windows 3.1, NT, 95 software compatibility

CONTROL.EYE EGANOND.GRB WPLF

COWA.FON EGANIND.LGO 1BM)

CORB.FON EMLAT JOTH RUNNENG BATCH(BAT) FLE
COMC.FON EMLPC KER§ 1y0ures theded scokcat

thould Create & FIF Sle 1o he L
T - TR [

Northeastern 9
University

Let’s build an operating system!

Northeastern
University

To build an OS, what tools would we need?

* Potential tools needed:
* High-level programming languages
* Assembly, C, ...
 Knowledge of
* Computer architecture
 Some idea about
* How to divide up resources: memory, processes, etc.

e Looks like we have some of these foundations!

* Note this is not a hypothetical question, new Operating Systems are
made all of the time

* e.g., Android, iOS, etc.

Northeastern 11
University

First Design Decision: Kernel

Northeastern
University

(Reminder of the Kernel)

One Program to rule them all,
One Program to find them,

One Program to bring them all,
and in darkness bind them in the
Land of Linux where
programmers code

SIS FIT9TE
IS SR S

*Pop Culture reference from Lord of the Rings

Northeastern 13
University

Towards a Kernel

* “The one program running at all times on the computer” is the
kernel

* Typically the first program loaded up
* (loaded by the bootloader--we’ll get to this)

* Questions:
 What are the features that kernels should implement?

 How should we architect the kernel to support these features?
* i.e. what feature does our kernel support and what goes into user land?

Northeastern 14
University

https://en.wikipedia.org/wiki/Kernel_(operating_system)

Kernel Features

* Device management
* Required: CPU and memory
* Optional: disks, keyboards, mice, video, etc.

Loading and executing programs

System calls and APlIs

Protection and fault tolerance
e E.g. a program crash shouldn’t crash the computer

Security
* E.g. only authorized users should be able to login

Northeastern
University

Architecting Kernels: Three basic approaches

Monolithic kernels
* All functionality is compiled together
* All code runs in privileged kernel-space

Microkernels
* Only essential functionality is compiled into the kernel
* All other functionality runs in unprivileged user space

Hybrid kernels
* Most functionality is compiled into the kernel
* Some functions are loaded dynamically
e Typically, all functionality runs in kernel-space

Northeastern
University

Monolithic Kernel

Monolithic kernels

All functionality is compiled together
All code runs in privileged kernel-space

Kernel Space

Monolithic Kernel Code
Policies Handiing APIs

Systems

Drivers

User Space

User Program

Northeastern
University

17

Microkernel

2. Microkernels

o Only essential functionality is compiled into the kernel
o All other functionality runs in unprivileged user space

Kernel Space User Space

Kernel Code § E

Manager] [

Scheduling
Communication 2

Northeastern
University

3.

Hybrid Kernel

Hybrid kernels
Most functionality is compiled into the kernel
Some functions are loaded dynamically
Typically, all functionality runs in kernel-space

Kernel Space User Space

Kernel Code

Manager .

Scheduling Driver

L Policies Handlin

File System File
Systems APIs 3 System)

Loader

Third-Party Code

Device
Driver

User Program

Northeastern
University

19

Research Kernels:

Mach :; =-
Embedded System: e

L4 Windows*7
GNU Hurd
QNX
e T~ N

I
Kernels for 2%

Microkernels: Hybrid Kernels: Monolithic Kernels:
Small code base, Pretty large code base, Huge code base,
Few features Some features delegated Many features

Northeastern 20
University

Pros/Cons of Monolithic Kernels

* Advantages?
* Single code base eases kernel development
* Robust APIs for application developers
* No need to find separate device drivers
* Fast performance due to tight coupling

e Disadvantages?
e Large code base, hard to check for correctness
* Bugs crash the entire kernel (and thus, the machine)

Northeastern 21
University

Pros/Cons of Microkernels

* Advantages?

 Small code base, easy to check for correctness
Extremely modular and configurable

Choose only the pieces you need for embedded systems
Easy to add new functionality (e.g., a new file system)
Services may crash, but the system will remain stable

e Disadvantages?
e Performance is slower: many context switches
* No stable APIs, more difficult to write applications

Northeastern
University

22

Pros/Cons of Hybrid

 Some mix of the tradeoffs taken from the Microkernels and
Monolithic kernels

Alright--let’s spec out something

closer to a hybrid kernel

Northeastern
University

Pieces of an Operating System

We need to be able to perform some typical OS services

Memory Management

Some abstract data types (arrays, strings, etc.)

Input and Output functions (printf, scanf, etc.)

File System

Ul Management

Textual Output
* Graphics

* Maybe more
* Security, networking, multi-processing

Northeastern
University

Pieces of an Operating System

We need to be able to perform some typical OS services
Memory Management
Some abstract data types (arrays, strings, etc.)

Input and Output functions (printf, sg

File SyStem If you take a close look, you'll notice
Ul Management some of these are starting to look like
our ‘system calls’

Textual Output
Graphics

Maybe more
* Security, networking, multi-processing

Northeastern
University

strace | strace cat test.c

e Remember the ‘strace’ tool?

 Something neat we can do too, is peak into all of these system calls
that are being made--again we can see there is no magic

"test.c"], Ox7ffcOce64bc8 /* 60 vars */) = 0
0x5650062aa000
-1 ENOENT (No such file or dire
-1 ENOENT (No such file or dire

cdooo

file or dire
|0 _CLOEXEC)

Northeastern
University

Northeastern
University

27

CS 3650 Computer Systems — Summer 2025

OS Kernels, Booting, xv6 (1)

Week 10

Northeastern
University * Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, Ji-Yong Shin and Alden Jackson’s lecture slides for the same course.

What is an Operating System?

e OS is software that sits between user programs and hardware

Hardware Operating

System

(e.g., mouse,
keyboard)

e OS provides interfaces to computer hardware
— User programs do not have to worry about details
 OSis aresource manager and control program
— Controls execution of user programs
— Decides between conflicting requests for hardware access
— Attempts to be efficient and fair
— Prevents errors and improper use

Northeastern
University

Kernel Features

* Device management
* Required: CPU and memory
* Optional: disks, keyboards, mice, video, etc.

Loading and executing programs

System calls and APlIs

Protection and fault tolerance
e E.g. a program crash shouldn’t crash the computer

Security
* E.g. only authorized users should be able to login

Northeastern
University

Architecting Kernels: Three basic approaches

Monolithic kernels
* All functionality is compiled together
* All code runs in privileged kernel-space

Microkernels
* Only essential functionality is compiled into the kernel
* All other functionality runs in unprivileged user space

Hybrid kernels
* Most functionality is compiled into the kernel
* Some functions are loaded dynamically
e Typically, all functionality runs in kernel-space

Northeastern
University

Pieces of an Operating System

We need to be able to perform some typical OS services

Memory Management

Some abstract data types (arrays, strings, etc.)

Input and Output functions (printf, scanf, etc.)

File System

Ul Management

Textual Output
* Graphics

* Maybe more
* Security, networking, multi-processing

Northeastern
University

The OS and Computer Architecture

* Let us say we have an OS like Linux

* How does our architecture know what to do with an Operating
System or where to load it from?

CPU
Register il

L_PC

—
Y| ALY

——

Systim bus Mamory bus

; - -t i A . .
|<'—'\-». T ™y Main
_ Bus interface J 1| bridge | -/"} memony

£
™ (]
|._ _.|, %) s | Expansion slots for
N NS “w” other davices such
usB Graphics l Disk &5 network adaplers
| controler | | adapter | controller |
¥ 3
Mouse Keyboard Display e
Ditak Rl lo axdcufabls
"SR | stored on disk

Northeastern
University

Does anything happen before our
Operating System is running?

34

Pop Interview Question

* “What happens after you push the power button on your machine?”
(i.e. what happens in software?)

Northeastern 35
University

Pop Interview Question

* “What happens after you push the power button on your machine?”
(i.e. what happens in software?)

* Understanding operating systems and putting together our
hardware knowledge will answer this question!

Northeastern 36
University

Northeastern
University

Boot Process

37

The first program is executed: The BIOS

* x86 machines start by executing a
program called the BIOS
* BIOS: Basic Input/Output System

North Bridge Processor Socket

 The BIOS is ‘baked into’ our PCl AGP
computers motherboard

 This means it is stored in non-volatile
memory SATA

(i.e. memory that persists)

* (A motherboard is the entirety of the
printed circuit you see on the right. It
helps organize all of the components | Bios South Bridge IDE
that are attached together).

Northeastern 38
University

https://www.digitaltrends.com/computing/what-is-a-motherboard/

More on BIOS and the ‘boot loader’ (1/2)

* The Basic Input/Output System’s (BIOS) job is to make sure that all
of the hardware is ready to go

* If all of the components are ready, then control is transferred into
what is called the ‘boot loader’

Northeastern
University

39

More on BIOS and the ‘boot loader’ (2/2)

* The BIOS transfers control to the ‘boot loader’ by looking at the
‘boot sector’, which has some amount of bytes (e.g. 512 bytes) that
tell us where the boot loader is.

* You may have seen programs like GRUB which allow you to select
which operating system to load.

* Our goal at this stage, is to use this very primitive ‘boot loader’
program, to launch and execute a more modern operating system.

* e.g. Windows, MacOS, Ubuntu, CentOS, etc.

Northeastern
University

Here is the OS loading process

* Here is the high-level abstraction--at the very least the steps to
remember

* BIOS ‘ Linux Bootstraping
» Boot loader Sxiab

* Operating System

Boot Loader for GNU/Linux l GNU/Linux

4

Bootloader

GRUB

=

[image source]

Northeastern 41
University

https://image.slidesharecdn.com/qi-090611024517-phpapp02/95/qi-lightweight-boot-loader-applied-in-mobile-and-embedded-devices-6-728.jpg?cb=1269055727

Northeastern
University

Digging deeper

42

Pushing power

1. Start the BIOS

2. Load settings from CMOS
(complementary metal-oxide semiconductor)

3. Initialize any attached devices
Run POST (Power on self-test)

5. Initiate the bootstrap sequence

Northeastern
University

43

https://en.wikipedia.org/wiki/Power-on_self-test
https://en.wikipedia.org/wiki/Power-on_self-test
https://en.wikipedia.org/wiki/Power-on_self-test

Starting the BIOS (1/5)

* Basic Input/Output System (BIOS)
* A mini-OS burned onto a chip

* Begins executing as soon as a PC powers on

e Code from the BIOS chip gets copied to RAM at a low address
(e.g. OXFF)

* jmp OxFF (16 bits) written to RAM at OxFFFFO
* x86 CPUs always start with OxFFFFO in the EIP register

* Essential goals of the BIOS
* Check hardware to make sure its functional
* Install simple, low-level device drivers

e Scan storage media for a Master Boot Record (MBR)
* Load the boot record into RAM
e Tells the CPU to execute the loaded code

Northeastern 44
University

Load settings from CMOQOS (2/5)

* BIOS often has configurable options
e Values are stored in a special battery-backed CMOS memory

* These values are then read in by the BIOS, often containing
information about how devices have been configured.

Northeastern
University

CHOS Setup Utility - Copyright (C) 1984-1999 Award Software

F Standard CHOS Features k Frequency-Uoltage Control

F Advanced BIOS Features Load Fail-Safe Defaults
F Advanced Chipset Features Load Optimized Defaults
F Integrated Peripherials aet Supervisor Password
F Power Hanagement Setup aet User Password

F PnP#PCI Configurations Save & Exit Setup

F PL Health Status Exit Hithout Sawing

Esc : Quit L : Select Item
Fi18 : Save & Exit Setup

Hard Disk Type...

45

https://en.wikipedia.org/wiki/CMOS

Initialize any attached devices (3/5)

CPU

e Scans and initializes hardware .
P ;_‘JHLU
* CPU and memory E\j Sysembue Memorybus
* Keyboard and mouse s K o K
* Video ily | -
* Bootable storage devices ™ [owe][
S v e other devices such
R . use Graphics Disk &s network adapte s
* Installs interrupt handlers in memory | Lyt | oo e
. Mouse Keyboard Display — 1 1o execulable
* Builds the Interrupt Vector Table [DEH_J et on dok

* Runs additional BIOSes on expansion cards
e Video cards and SCSI cards often have their own BIOS

Northeastern 46
University

Run Power On Self-Test (POST) test (4/5)

* This is a diagnostic test to make sure all of the devices that are
connected and initialized in the previous steps are working.

* POST Test
* Check RAM by read/write to each address
* Check to make sure keyboard is working
* Check to make sure connected hard drives are working
* etc.

Northeastern
University

Bootstrap in an operating system (5/5)

* Finally we need to find and load a real OS

BIOS identifies all potentially bootable devices
* Tries to locate Master Boot Record (MBR) on each device
* Order in which devices are tried is configurable

Master Boot Record (MBR) has code that can load the actual OS
* Code is known as a bootloader

Example bootable devices:

* Hard drive, SSD, floppy disk, CD/DVD/Bluray, USB flash drive,
network interface card (NIC)

Northeastern
University

The Master Boot Record (MBR)

» Special 512-byte file in sector 1 (address 0) of a storage device

Address Size
. Description (Bytes)
* Contains | Hex | Dec. | (Byt

e 446 bytes of executable code 0x000 0 Bootstrap code area
e Entries for 4 partitions Ox1BE 446 Partition Entry #1 16
Ox1CE 462 Partition Entry #2 16
Ox1DE 478 Partition Entry #3 16
Ox1EE 494 Partition Entry #4 16
Ox1FE 510 Magic Number 2
Total: 512

* Too small to hold an entire OS
e Starts a sequence of chain-loading

Northeastern 49
University

Example Bootloader: GRUB

e Grand Unified Bootloader
* Used with Unix, Linux, Solaris, etc.

GNU GRUB wversion 8.95 (638K lower -/ 288784R upper memory)

Ubuntu, kernel 2.6.12-9-386 (recovery mode)
Ubuntu, mMemtest86+

Other operating systems:

Windows NT/2888/XP

Use the * and |V keys to select which entry is highlighted.
Press enter to boot the selected 0S, ’'e’ to edit the
commands before booting, or 'c’ for a command-line.

O
&
& 3
x 2 |/boot/grub/|
&
> @
(o)
Al
co * sdal sda3 sda5 sda6
20} % Empty space: NTFS extq extd
Z & 512 byte: sectors 1 to 2047 /boot and ¢ /home
4096 byte: sectors 1 to 255 10-20 GiB as much as required
*Source: https://en.wikipedia.org/wiki/GNU_GRUB
Northeastern

University

We need to find and load a real OS now
(Xv6)

Northeastern
University

But now lets really see it in action

* We will actually work with a small operating system so we can see
exactly what the code looks like.

Introducing xv6'!

Northeastern
University

Goal: Figure out the boot process from a
programmer’s perspective

* Our tool is going to be to use the xv6 operating system.

* xv6 is yet another Unix inspired variant--although much more
lightweight (Several thousands of lines of code versus millions).

We are the best
Operating
Systems!

| There is
—wg another

Northeastern 54
University

OUF tOOl XV6 ‘ https://pdos.csail.mit.edu/6.828/2017/xv6.html

Xwh, o simple Unix-like teaching operating system

Intraduction

* Not something your instructor developed

* But some folks at MIT have been working on this for long
* You can and certainly should browse this link for a deeper dive.

* There is some handy documentation if you want to browse online

from NEU faculty (be warned, this is 2 revisions old)
https://course.ccs.neu.edu/cs3650/unix-xv6/

Northeastern
University

UNIX xv6 (rev8, 9/1/15)
m Diata Struciuses Files

UNIX xv6 (rev8, 9/1/15) Documentation

(MOTE: The end of this page has advice on Using this dowygen inleraoe o browse the oode.)

XVE is based on Sixh Ection LN (LINI WEL I s dsinbuted from hipolpdas coail m ¢ (ER P B I
S the Table of Contents, page 1, of wvi-revE pad, for 8 nicely argantad listing of the Source fikes acconiing i
Thet code 5 Surprisingly small (about 100 pages). yet complete. However, some of the modem operating sysiem

« keimned SUpEan far 8 nelwark
= kerned suppon for threads

(FOWEVET, 3 USET-5Pa08 FMDEMmeTTiaion, SUCh 85 NS wa Threads (GHU Pih), could be used o =
o @ IS ViUl MEmany $y3em SuMcient 10 Suppor shaned memany BHranes. Such as = 50 files

55

https://pdos.csail.mit.edu/6.828/2017/xv6.html
https://course.ccs.neu.edu/cs3650/unix-xv6/
https://course.ccs.neu.edu/cs3650/unix-xv6/
https://course.ccs.neu.edu/cs3650/unix-xv6/

XV6

* Monolithic kernel

* Runs on x86 processors
* Note that x86-based versions are no longer maintained
* xv6 development has moved on to RISC-V

» Refer to the course webpage for useful resources
* https://pdos.csail.mit.edu/6.828/2017/xv6/book-rev10.pdf
e https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf

Northeastern
University

56

https://pdos.csail.mit.edu/6.828/2017/xv6/book-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/book-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/book-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/book-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/book-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf

Boot process in Xv6

Northeastern
University

Files we will look at

Bootasm.S
* Real mode -> protected mode
* Calls bootmain.c

Bootmain.c
e Reads main from disk

Main.c
e |nitializes the kernel

Proc.c
* Process creation and scheduling

Initcode.S
 Starter code for init process

* |nit.c
* |nit process

Northeastern
University

bootasm.S - real mode to protected mode

* Real mode
* Xx86 machine starts with real mode
e Simulates the old Intel 8088 (1979)
16 bit registers
20 bit memory address (1MB memory)
No virtual memory support
No memory protection
No paging support

* (32bit) Protected mode (CRO register)
* Virtual address space enabled
* Max 4GB memory
* Protected ring support (recall ring O to 3)

Northeastern
University

bootasm.S - Where our bootstrapping process begins

Start the first CPU: switch to 32-bit protected mode, jump into C.
The BIOS loads this code from the first sector of the hard disk into
memory at physical address 0x7c00 and starts executing in real mode

with %cs=0 %ip=7c00.

.codel6 # Assemble for 16-bit mode
.globl start
start:

cli # BIOS enabled interrupts; disable

Zero data segment registers DS, ES, and SS.

Xorw %ax,%ax # Set %ax to zero

movw %ax,%ds # -> Data Segment
movw %ax,%es # -> Extra Segment
movw %ax, %ss # -> Stack Segment

Northeastern
University

Bootmain.c: loads ELF kernel from disk

// Boot loader.

// Part of the boot block, along with bootasm.S, which calls bootmain().
// bootasm.S has put the processor into protected 32-bit mode.

// bootmain() loads an ELF kernel image from the disk starting at

// sector 1 and then jumps to the kernel entry routine.

#include "types.h"

#include "elf.h"

#include "x86.h"

#include "memlayout.h"

#define SECTSIZE 512

void readseg(uchar*, uint, uint);

void bootmain(void)

Northeastern
University

61

main.c

e After we have successfully
bootstrapped, we can begin
executing main

 We can actually see various
parts of the OS that get setup!
 Handling files, working with
disk, setting up processes,
etc.

Northeastern
University

// Bootstrap processor starts running C code here.
// Allocate a real stack and switch to it, first
// doing some setup required for memory allocator to work.
int
main(void)
{
kinitl(end, P2V(4*1024*1024)); // phys page allocator
kvmalloc(); // kernel page table
mpinit(); // detect other processors

lapicinit(); //interrupt controller
seginit(); //segment descriptors
picinit(); //disable pic

ioapicinit(); // another interrupt controller

consoleinit(); //console hardware

uartinit(); //serial port
pinit(); // process table
tvinit(); // trap vectors
binit(); // buffer cache
fileinit(); //file table
ideinit(); //disk

startothers(); // start other processors

kinit2(P2V(4*1024*1024), P2V(PHYSTOP)); // must come after startothers()
userinit(); // first user process

mpmain(); // finish this processor's setup

62

Memory

OXFFFFFFFF

0x80100000

text and data

BIOS

0x80000000 —>

0

text and data

.
-

Virtual address space

Northeastern
University

-

kernel text
and data

BIOS

Physical memory

Top physical
memory

4 Mbyte

User init

e Userinit

Creates a process from process table

Run initcode.S which the compiled binary is part of the kernel

Initcode.S code “exec” compiled binary at /init (i.e., init.c)

Init.c opens console for stdin, stdout, sterr and forks shell

Northeastern
University

proc.c

* Onceour OS isrunning, proc schedules

different processes from a table to run
* See ‘scheduler’ in proc.c

Northeastern
University

// Per-CPU process scheduler.
// Each CPU calls scheduler() after setting itself up.
// Scheduler never returns. It loops, doing:
// - choose a process to run
// - swtch to start running that process
// - eventually that process transfers control
// via swtch back to the scheduler.
void
scheduler(void)
{
struct proc *p;
struct cpu *c = mycpu();
c->proc = 0;

for(;;{
// Enable interrupts on this processor.
sti();
// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->state != RUNNABLE)
continue;
// Switch to chosen process. It is the process's job
// to release ptable.lock and then reacquire it
// before jumping back to us.

65

Walkthrough of xv6 Scheduler

* Thinking about some of these trade-offs, it will be beneficial to look
at things from an xv6 perspective.

* Investigating ‘scheduler’ within xv6 will show how scheduling is done.

Northeastern
University

Operating System Scheduler

* The scheduler in an Operating system is responsible for picking
which process runs.

* The OS gives each process a ‘time slice’ to execute.

* The OS tries to be fair in making sure every process can make some
progress

 However, there are some trade-offs
* Should a long running process using lots of resources get more time?

 Or would we rather have short running processes just finish and be
done?

* How does the Operating System even know or estimate time spent?

Northeastern
University

Basic Scheduler Architecture

* Scheduler selects from ready processes, and assigns them to a CPU
e System may have >1 CPU
* Various different approaches for selecting processes

* Scheduling decisions are made when a process:

1. Switches from running to waiting
Terminates No preemption

2.
3. Switches from running to ready
4.

Switches from waiting to ready Preemption

e Scheduler may have access to additional information
* Process deadlines, data in shared memory, etc.

Northeastern
University

Basic Process Behavior

* Processes alternate between
doing work and waiting

e Work = CPU Burst

* Process behavior varies
* |/O bound
e CPU bound

* Expected CPU burst
distribution is important for
scheduler design

* Do you expect more CPU or
I/O bound processes?

Northeastern
University

CPU
Burst

Wait

Process 1

Process 2

| |
vs
.
:‘
o
:
L 3
¢
L]
| |
| |

| |
ks
.
:‘
I
Y.
*

.
“
.,

| |

Vo
0“’
o..‘
o“‘

‘e

& e

Execute
Code

Waiting
on /0
Execute
Code
Waiting
on 1/0
Execute
Code
Waiting
on 1/0

L

*
Y

*
N
S

RaeE for mutex

L 4
%
n

<
%a

*
*
*

L 4
®

v

Execute

sleep(1)

Waiting

Execute

Code

69

Scheduling Optimization Criteria
* Max CPU utilization — keep the CPU as busy as possible

Max throughput — # of processes that finish over time
 Min turnaround time —amount of time to finish a process
 Min waiting time —amount of time a ready process waits until it runs

* Min response time —amount time between submitting a request and
receiving a response

* E.g. time between clicking a button and seeing a response

e Fairness —all processes receive fair CPU resources

* No scheduler can meet all these criteria
 Which criteria are most important depend on types of processes

and expectations of the system
 E.g.response time is key on the desktop
 Throughput is more important for MapReduce

Northeastern 70
University

First Come, First Serve (FCFS)

* Simple scheduler
* Processes stored in a FIFO queue
e Served in order of arrival

Burst | Arrival
Time Time
P1 24 0.000

P2 3 0.001
P3 3 0.002

P2 P3
Time: 0 24 27 30

* Turnaround time = completion time - arrival time
— P1=24;P2=27;,P3=30
— Average turnaround time: (24 + 27 + 30) / 3 = 27

Northeastern 71
University

The Convoy Effect

* FCFS scheduler, but the arrival order has changed

Burst | Arrival
Time Time

P1 24 0.002 P2 P3
P2 3 0.000 Time:0 3 6
P3 3 0.001

 Turnaround time:P1=30;P2=3;P3=6
— Average turnaround time: (30+3+6) /3 =13
— Much better than the previous arrival order!

e Convoy effect (a.k.a. head-of-line blocking)

— Long process can impede short processes
— E.g.: CPU bound process followed by I/O bound process

Northeastern
University

P1

30

72

Shortest Job First (SJF)

e Schedule processes based on the length of their next CPU burst time
* Shortest processes go first

Burst | Arrival
Time | Time

p1 6 0
& : L Time:0 3 9 16 24
P3 7 0
P4 3 0

e Average turnaround time: (3+9+16+24)/4=13

* SJFis optimal: guarantees minimum average wait time

(if all jobs arrive at the same time)| Wl el e Ee e ilE el e
Do you see any problem?

Northeastern 73
University

Predicting Next CPU Burst Length

* Problem: future CPU burst times may be unknown

* Solution: estimate the next burst time based on previous burst lengths
* Assumes process behavior is not highly variable
* Use exponential averaging
* t,—measured length of the nt" CPU burst
* T, — predicted value for n+1%* CPU burst
* a— weight of current and previous measurements (0<a <1)
e T =0at,+(1—-a)T,
e Typically, a =0.5

Northeastern
University

What About Arrival Time?

e SJF scheduler, CPU burst lengths are known

Burst | Arrival
Time Time

P1 24 0

P2 3 2 _
Time: 0

P3 3 3

e Scheduler must choose from available processes
— Can lead to head-of-line blocking
— Average turnaround time: (24 + 25 + 27) / 3=25.3

Northeastern
University

24

P2 P3
27 30

75

Shortest Time-To-Completion First (STCF)

* Also known as Preemptive SJF (PSJF)

* Processes with long bursts can be context switched out in favor
or short processes

Burst | Arrival
Time Time

_________ P1 P2 P3
P2 3 2

Time: 0 2 5 3 30
P3 3 3

* Turnaround time: P1=30;P2=3;P3=5
— Average turnaround time: (30 +3+5)/3=12.7

e STCF is also optimal
— Assuming you know future CPU burst times

Northeastern 76
University

Interactive Systems

* Imagine you are typing/clicking in a desktop app
* You don’t care about turnaround time

* What you care about is responsiveness

* E.g. if you start typing but the app doesn’t show the text for 10 seconds,
you’ll become frustrated

* Response time = first run time — arrival time

Northeastern
University

Response vs. Turnaround

e Assume an STCF scheduler

Burst | Arrival
Time Time

P1 6 0
P2 8 0 _

Time: 0 6
P3 10 0

e Avg.turnaround time: (6 +14+24)/3=14.7
* Avg.responsetime:(0+6+14)/3=6.7

Northeastern
University

14

24

78

Round Robin (RR)

* Round robin (a.k.a time slicing) scheduler is designed to reduce
response times

* RR runs jobs for a time slice (a.k.a. scheduling quantum)
e Size of time slice is some multiple of the timer-interrupt period

Northeastern
University

i
RR vs. STCF Time | Time

P1 6 0
P2 8 0
P3 10 0
P1 P2 P3
STCF Time: 0 6 14 24

e Avg.turnaround time: (6 + 14 +24) /3 =14.7
* Avg.responsetime:(0+6+14)/3=6.7

PL P2 P3 P1 P2 P3 P1 P2 P3 P2
Time:0 2 4 6 8 10 12 14 16 18 20 24

e 2 second time slices

RR .
e Avg. turnaround time: (14 +20+24) /3 =19.3
 Avg.responsetime:(0+2+4)/3=2

Northeastern 80
University

Tradeoffs

RR STCF
+ Excellent response times + Achieves optimal, low
+ With N process and time slice of Q... turnaround times
+ No process waits more than - Bad response times

N-1 time slices : .
: - Inherently unfair

+ Achieves fairness - Short jobs finish first
+ Each process receives 1/N CPU time

- Worst possible turnaround times
- If Qis large = FIFO behavior

e Optimizing for turnaround or response time is a trade-off

* Achieving both requires more sophisticated algorithms

Northeastern 81
University

Selecting the Time Slice

* Smaller time slices = faster response times

* So why not select a very tiny time slice?
* E.g.1ps
e Context switching overhead

e Each context switch wastes CPU time (~10ps)

* |f time slice is too short, context switch overhead will dominate
overall performance

e This results in another tradeoff
e Typical time slices are between 1ms and 100ms

Northeastern
University

	Slide 1: OS Kernels, Booting, xv6 (1)
	Slide 2: What is an Operating System?
	Slide 3: Many Different OSes
	Slide 4: Without an operating system
	Slide 5: Be grateful this isn't your IDE!
	Slide 6
	Slide 7: Brief Operating System History [link]
	Slide 8: Brief Operating System History [link]
	Slide 9: IBM Eventually Loses Control
	Slide 10
	Slide 11: To build an OS, what tools would we need?
	Slide 12
	Slide 13: (Reminder of the Kernel)
	Slide 14: Towards a Kernel
	Slide 15: Kernel Features
	Slide 16: Architecting Kernels: Three basic approaches
	Slide 17: Monolithic Kernel
	Slide 18: Microkernel
	Slide 19: Hybrid Kernel
	Slide 20
	Slide 21: Pros/Cons of Monolithic Kernels
	Slide 22: Pros/Cons of Microkernels
	Slide 23: Pros/Cons of Hybrid
	Slide 24: Pieces of an Operating System
	Slide 25: Pieces of an Operating System
	Slide 26: strace | strace cat test.c
	Slide 27
	Slide 28: OS Kernels, Booting, xv6 (1)
	Slide 29: What is an Operating System?
	Slide 30: Kernel Features
	Slide 31: Architecting Kernels: Three basic approaches
	Slide 32: Pieces of an Operating System
	Slide 33: The OS and Computer Architecture
	Slide 34
	Slide 35: Pop Interview Question
	Slide 36: Pop Interview Question
	Slide 37
	Slide 38: The first program is executed: The BIOS
	Slide 39: More on BIOS and the ‘boot loader’ (1/2)
	Slide 40: More on BIOS and the ‘boot loader’ (2/2)
	Slide 41: Here is the OS loading process
	Slide 42: Digging deeper
	Slide 43: Pushing power
	Slide 44: Starting the BIOS (1/5)
	Slide 45: Load settings from CMOS (2/5)
	Slide 46: Initialize any attached devices (3/5)
	Slide 47: Run Power On Self-Test (POST) test (4/5)
	Slide 48: Bootstrap in an operating system (5/5)
	Slide 49: The Master Boot Record (MBR)
	Slide 51: Example Bootloader: GRUB
	Slide 52
	Slide 53: But now lets really see it in action
	Slide 54: Goal: Figure out the boot process from a programmer’s perspective
	Slide 55: Our tool xv6 | https://pdos.csail.mit.edu/6.828/2017/xv6.html
	Slide 56: xv6
	Slide 57
	Slide 58: Files we will look at
	Slide 59: bootasm.S - real mode to protected mode
	Slide 60: bootasm.S - Where our bootstrapping process begins
	Slide 61: Bootmain.c: loads ELF kernel from disk
	Slide 62: main.c
	Slide 63: Memory
	Slide 64: User init
	Slide 65: proc.c
	Slide 66: Walkthrough of xv6 Scheduler
	Slide 67: Operating System Scheduler
	Slide 68: Basic Scheduler Architecture
	Slide 69: Basic Process Behavior
	Slide 70: Scheduling Optimization Criteria
	Slide 71: First Come, First Serve (FCFS)
	Slide 72: The Convoy Effect
	Slide 73: Shortest Job First (SJF)
	Slide 74: Predicting Next CPU Burst Length
	Slide 75: What About Arrival Time?
	Slide 76: Shortest Time-To-Completion First (STCF)
	Slide 77: Interactive Systems
	Slide 78: Response vs. Turnaround
	Slide 79: Round Robin (RR)
	Slide 80: RR vs. STCF
	Slide 81: Tradeoffs
	Slide 82: Selecting the Time Slice

