
Concurrency (2)

Week 9

CS 3650 Computer Systems – Summer 2025 

* Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, Ji-Yong Shin's  and Alden Jackson’s lecture slides for the same course.



Bank Transactions
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A series (i.e. serial) of Bank Transactions

1. If I start with $25 in my checking account.

2. Then I deposit $50, I have $75.

3. If I then withdraw $50, I now have $25.

4. My final balance is $25.

5. There is a variable checkings that monitors our balance.
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Concurrent Bank Transaction

1. If I start with $25 in my checking account.

2. Then I deposit $50 and withdraw $50 at the same time (concurrently)

3. My final balance should still be $25.

4. There is a shared variable checkings in each 
thread that monitors our balance.
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Read our initial balance
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checkings = 25

Thread Z:
checkings = ??

deposit(50)

checkings = ??

Thread Y:
checkings = ??
withdraw(50)
checkings = ??

checkings = ???

Ti
m

e Thread ZThread Y



Okay, we have $25 – now move on
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checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = ??

Thread Y:
checkings = 25
withdraw(50)
checkings = ??

checkings = ???

Ti
m

e Thread ZThread Y



withdraw and deposit occur (Thread Y and Z)
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checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = ??

Thread Y:
checkings = 25
withdraw(50)
checkings = ??

checkings = ???

Ti
m

e Thread ZThread Y



Checkings from Thread Y updates first
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checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = ??

Thread Y:
checkings = 25
withdraw(50)

checkings = -25

checkings = ???

Ti
m

e Thread ZThread Y



(Thread Z) updates its checkings value shortly after
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checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = 75

Thread Y:
checkings = 25
withdraw(50)

checkings = -25

checkings = ???

Ti
m

e Thread ZThread Y



Now we have conflicting information
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checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = 75

Thread Y:
checkings = 25
withdraw(50)

checkings = -25

checkings = ???

Ti
m

e Thread ZThread Y



checkings stores the last value of 75 (Thread Z)
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checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = 75

Thread Y:
checkings = 25
withdraw(50)

checkings = -25

checkings = 75

Ti
m

e

checkings = 75checkings = 75

Thread ZThread Y

checkings = -25



What if these operations had swapped!
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checkings = 25

checkings = 25
deposit(50)

checkings = 75

checkings = 25
withdraw(50)

checkings = -25

checkings = ???

Ti
m

e Thread ZThread Y

checkings = 75
checkings = -25



This time our balance is -25! (Thread Y)
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checkings = 25

checkings = 25
deposit(50)

checkings = 75

checkings = 25
withdraw(50)

checkings = -25

checkings = -25

Ti
m

e Thread ZThread Y

checkings = -25
checkings = 75



How about if Thread Z lags behind Thread Y?
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checkings = 25

checkings = ??
deposit(50)

checkings = ??

checkings = ??
withdraw(50)
checkings = ??

checkings = ??

Ti
m

e

Thread ZThread Y



How about if Thread Z lags behind Thread Y?
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checkings = 25

checkings = ??
deposit(50)

checkings = ??

checkings = 25
withdraw(50)

checkings = -25

checkings = -25

Ti
m

e

Thread ZThread Y



How about if Thread Z lags behind Thread Y?
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checkings = -25

checkings = ??
deposit(50)

checkings = ??

checkings = 25
withdraw(50)

checkings = -25

checkings = ??

Ti
m

e

Thread ZThread Y



How about if Thread Z lags behind Thread Y?
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checkings = -25

checkings = -25
deposit(50)

checkings = ??

checkings = 25
withdraw(50)

checkings = -25

checkings = ??

Ti
m

e

Thread ZThread Y



Okay—this time we happen to get 25
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checkings = -25

checkings = -25
deposit(50)

checkings = 25

checkings = 25
withdraw(50)

checkings = -25

checkings = 25 ok

Ti
m

e

Thread ZThread Y



We have witnessed a data race

A common concurrency problem
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checkings = -25 checkings = 25 okcheckings = 75



We need to synchronize – enforce ordering
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checkings = 25

Thread Y:
checkings = 25
withdraw(50)

Thread Z:
checkings = -25

deposit(50)

checkings = 25  always correct

Ti
m

e



(The Bug!)

• What is wrong with this 
program?

• The problem is we have a 
global “counter” that is shared

• There is an interleaving of 
instructions here.

• Any possible interleaving can 
occur!

• Solution is to add locks!
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What Data is Shared in Threaded C Programs?

• Global variables are shared
• We just saw an example with counter.
• (Note: the compilers can be smart)

• (“counter” is only shared if it is referenced within the thread, otherwise 
do not copy it.)
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Threads Memory Model: Conceptual

• Multiple threads run within the context of a single process

• Each thread has its own separate thread context
• Thread ID, stack, stack pointer, PC, condition codes, and General 

Purpose Registers

• All threads share the remaining process context
• Code, data, heap, and shared library segments for virtual address 

space
• Open files 
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Threads Memory Model: Actual

• Separation of data is not strictly enforced:
• Register values are truly separate and protected
• Any thread however, can read and write the stack of any other thread
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Mapping Variable Instances to Memory

• Global Variables
• Definition: Variable declared outside of a function
• Virtual Memory contains exactly one instance of any global variable

• Local Variables
• Definition: Variable declared inside function without static attribute
• Each thread stack contains one instance of each local variable

• Local static variables
• Definition: Variables declared inside function with the static attribute
• Virtual memory contains exactly one instance of any local static 

variable.

25



Mapping Variable Instances to Memory

• 1 main thread “m” and two threads “p0” and “p1”

26



Shared Variable Analysis

• 1 main thread “m” and two threads “p0” and “p1”
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Shared Variable Analysis
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ptr?



Shared Variable Analysis

29

Global



Shared Variable Analysis

30

cnt?



Shared Variable Analysis
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All threads share 

this ‘static’ value



Shared Variable Analysis
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i.m?



Shared Variable Analysis
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Shared? 



Shared Variable Analysis
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Shared? 
Yes. 



Shared Variable Analysis

35

msgs?

(careful)



Shared Variable Analysis
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We have a ‘ptr’ to msg, 

so effectively shared



Shared Variable Analysis

37

myid.p0?



Shared Variable Analysis

38

Local to peer 

thread 0 only



Shared Variable Analysis
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So for 

myid.p1?



Shared Variable Analysis

40

Local to peer 

thread 1 only



Synchronization of Threads

• Shared variables are thus handy for moving around data

• But if we do not share properly, we can have synchronization 
errors!

• There is a solution however!
• (recap below)

41
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We need a tool to protect shared resources

void deposit (float amount) 

{

 checkings += amount;

}
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Why to be careful with locks
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Correctness (can be) Easy
Performance Hard

    

    withdraw(…) {…}

    deposit(…) {…}

    addInterest(…) {…}

    checkMinBalance(…) {…}

    chargeFee(…) {…}

    printBalance(…) {…}

44

Simply add locks!

lock

lock

lock

lock

lock

lock



Correctness (can be) Easy
Performance Hard

    

    withdraw(…) {…}

    deposit(…) {…}

    addInterest(…) {…}

    checkMinBalance(…) {…}

    chargeFee(…) {…}

    printBalance(…) {…}
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Simply add locks!

lock

lock

lock

lock

lock

lock

Good job—
no data races 

here!



By Max Roser, Hannah Ritchie - https://ourworldindata.org/uploads/2020/11/Transistor-Count-over-time.png, CC BY 4.0, 
https://commons.wikimedia.org/w/index.php?curid=98219918

Your program runs  
sequentially– did you 
forget about Amdahl’s 

law?

Correctness (can be) Easy
Performance Hard
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Where should we place locks?

• Suppose we have a shared counter which we increment by some 
precomputed value
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int cumulative_time = 0; // global variable

Int main(void) {
 …
 for (int i = 0; i < 100; i++)
  pthread_create(&tid[i], NULL, 
     thread, NULL);
 …
 // joins all threads
 …
 printf(“cumulative time %d\n”,
    cumulative_time);
 return 0;
}

void *thread(void *argv) {
 int start = get_current_time_in_int();
 
 int tmp = 0;
 for (int i = 0; i < 100000; i++) {
  tmp += I;
 }
 
 int end = get_current time_in_int();
 int elapsed = end – start;
 
 cumulative_time += elapsed;
}



Critical Sections

• These examples highlight the critical section problem

• Classical definition of a critical section:

“A piece of code that accesses a shared resource that MUST NOT be 
concurrently accessed by more than one thread of execution.”

• Unfortunately, this definition is somewhat misleading
• Implies that the piece of code is the problem

• In fact, the shared resource is the root of the problem
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Concurrent queue example
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typedef struct node { 
 int value; 
 struct node *next; 
} node_t; 

typedef struct queue { 
 node_t *head; 
 node_t *tail; 
} queue_t;

void queue_enqueue(queue_t *q, int value) {
 node_t *tmp = malloc(sizeof(node_t)); 

 tmp->value = value; 
 tmp->next = NULL; 

 q->tail->next = tmp; 
 q->tail = tmp; 
}

int queue_dequeue(queue_t *q, int *value) {  
 node_t *tmp = q->head; 
 node_t *new_head = tmp->next; 

 if (new_head == NULL) 
  return -1; // queue was empty 

 *value = new_head->value; 
 q->head = new_head; 
 free(tmp); 
 return 0; 
}

queue_t *queue_new() { 
 queue_t *q = malloc(sizeof(queue_t)); 
 node node_t *tmp = 
  malloc(sizeof(node_t)); 
 tmp->next = NULL; 
 q->head = q->tail = tmp; 
 return q; 
}



Queue

50

dummy 1 2head

tail tailtail

void queue_enqueue(queue_t *q, int value) {
 node_t *tmp = malloc(sizeof(node_t)); 

 tmp->value = value; 
 tmp->next = NULL; 

 q->tail->next = tmp; 
 q->tail = tmp; 
}

int queue_dequeue(queue_t *q, int *value) {  
 node_t *tmp = q->head; 
 node_t *new_head = tmp->next; 

 if (new_head == NULL) 
  return -1; // queue was empty 

 *value = tmp->value; 
 q->head = new_head; 
 free(tmp); 
 return 0; 
}

head
head



Queue (enqueue race)

51

dummy 1

2

head

tail

3

tail

tail

void queue_enqueue(queue_t *q, int value) {
 node_t *tmp = malloc(sizeof(node_t)); 

 tmp->value = value; 
 tmp->next = NULL; 

 q->tail->next = tmp; 
 q->tail = tmp; 
}

int queue_dequeue(queue_t *q, int *value) {  
 node_t *tmp = q->head; 
 node_t *new_head = tmp->next; 

 if (new_head == NULL) 
  return -1; // queue was empty 

 *value = new_head->value; 
 q->head = new_head; 
 free(tmp); 
 return 0; 
}



Queue (dequeue race)
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dummy 1head

tail

void queue_enqueue(queue_t *q, int value) {
 node_t *tmp = malloc(sizeof(node_t)); 

 tmp->value = value; 
 tmp->next = NULL; 

 q->tail->next = tmp; 
 q->tail = tmp; 
}

int queue_dequeue(queue_t *q, int *value) {  
 node_t *tmp = q->head; 
 node_t *new_head = tmp->next; 

 if (new_head == NULL) 
  return -1; // queue was empty 

 *value = new_head->value; 
 q->head = new_head; 
 free(tmp); 
 return 0; 
}

head

head

Free twice



Queue (fixes)

• Use a lock
• Problems?

• Can use two different locks
• Tail lock, head lock
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void queue_enqueue(queue_t *q, int value) {
 node_t *tmp = malloc(sizeof(node_t)); 

 tmp->value = value; 
 tmp->next = NULL; 

 q->tail->next = tmp; 
 q->tail = tmp; 
}

int queue_dequeue(queue_t *q, int *value) {  
 node_t *tmp = q->head; 
 node_t *new_head = tmp->next; 

 if (new_head == NULL) 
  return -1; // queue was empty 

 *value = new_head->value; 
 q->head = new_head; 
 free(tmp); 
 return 0; 
}

dummy 1 2head

tail
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Threads Memory Model: Conceptual

• Multiple threads run within the context of a single process

• Each thread has its own separate thread context
• Thread ID, stack, stack pointer, PC, condition codes, and General 

Purpose Registers

• All threads share the remaining process context
• Code, data, heap, and shared library segments for virtual address 

space
• Open files 
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Threads Memory Model: Actual

• Separation of data is not strictly enforced:
• Register values are truly separate and protected
• Any thread however, can read and write the stack of any other thread
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Mapping Variable Instances to Memory

• Global Variables
• Definition: Variable declared outside of a function
• Virtual Memory contains exactly one instance of any global variable

• Local Variables
• Definition: Variable declared inside function without static attribute
• Each thread stack contains one instance of each local variable

• Local static variables
• Definition: Variables declared inside function with the static attribute
• Virtual memory contains exactly one instance of any local static 

variable.
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Critical Sections

• These examples highlight the critical section problem

• Classical definition of a critical section:

“A piece of code that accesses a shared resource that MUST NOT be 
concurrently accessed by more than one thread of execution.”

• Unfortunately, this definition is somewhat misleading
• Implies that the piece of code is the problem

• In fact, the shared resource is the root of the problem
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Where should we place locks?

• Suppose we have a shared counter which we increment by some 
precomputed value

60

int cumulative_time = 0; // global variable

Int main(void) {
 …
 for (int i = 0; i < 100; i++)
  pthread_create(&tid[i], NULL, 
     thread, NULL);
 …
 // joins all threads
 …
 printf(“cumulative time %d\n”,
    cumulative_time);
 return 0;
}

void *thread(void *argv) {
 int start = get_current_time_in_int();
 
 int tmp = 0;
 for (int i = 0; i < 100000; i++) {
  tmp += I;
 }
 
 int end = get_current time_in_int();
 int elapsed = end – start;
 
 cumulative_time += elapsed;
}



What can go wrong with locks?

• Forgetting to unlock
• Other threads wait indefinitely and program can freeze

• Unlocking more than once 
• Undefined behavior

• Locking more than once
• Thread blocks at the second call 
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Deadlocks
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Layers
of Locks

63

mutex A

mutex  B 

Thread 1

lock A

lock B

// do something

unlock B

unlock A

Thread 2

lock B

lock A

// do something

unlock A

unlock B

Thread 1 Thread 2

lock(A)

lock(B)

unlock(B)

unlock(b)

lock(B)

lock(A)

unlock(A)

unlock(B)

Thread 1 Thread 2

lock(A)

lock(B)

lock(B)

unlock(B)

unlock(A) lock(A)

unlock(A)

unlock(B)

Thread 1 Thread 2

lock(A) lock(B)

lock(B) lock(A)

Deadlock :(



Deadlock

• Four necessary conditions
• Mutual exclusion

• Only one owner is allowed for the resource

• Hold and wait
• Holding on one or more resources and waiting to acquire more

• No preemption
• Resources cannot be taken away 

• Circular wait
• Holding on a resource and waiting for others in circular manner

• Removing one or more conditions will resolve deadlocks
• Use of try_lock and releasing existing resources upon trying to lock

• Carefully ordering lock function call orders to avoid circular waits
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pthread_mutex_trylock

• Tries to acquire lock
• If successful, return true and 

proceed with exclusive access

• Else return false and proceed 
without exclusive access

• Why is unlock() called only 
inside if statement?

• What is the final counter 
value if 10 threads execute 
concurrently?

65

pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

int counter = 0;

void *thread (void *argv) {
        for (int i = 0; i < 10; i++) {
                if (pthread_mutex_tryloc(&mtx)) {
                        counter = counter + 1;
                        pthread_mutex_unlock(&mtx);
                }
        }
}



Thread safety
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Thread Safety

• Functions called from a thread need to be ‘thread-safe’

• A Function is thread-safe if it: 
• Always produces correct results 
• When called repeatedly from multiple concurrent threads.
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Thread-Safety Classes

• Class 1: Functions that do not protect shared variables

• Class 2: Functions that keep state across multiple invocations

• Class 3: Functions that return a pointer to a static variable

• Class 4: Functions that call thread-unsafe functions
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Thread-Unsafe Functions Class 1

• Functions that do not protect shared variables
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Thread-Unsafe Functions Class 1 - Fix

• Functions that do not protect shared variables

• The solution: Ensure locks are around everything
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Thread-Unsafe Functions Class 2

• Functions that keep state across multiple invocations
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Thread-Unsafe Functions Class 2

• Functions that keep state across multiple invocations

72

rand() is a classic example. In 

fact, why might we not want a 
race condition in our random 
number generator?



Thread-Unsafe Functions Class 2

• Functions that keep state across multiple invocations

73

Ans: May want 

repeatability for testing. So 
since rand is deterministic, 
we don’t want multiple 

threads returning the same 
value



Thread-Unsafe Functions Class 2 - Fix

• Functions that keep state across multiple invocations

• The solution: Pass state as part of an argument so ‘static’ can be 
removed
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Thread-Unsafe Functions Class 2 - Fix

• Functions that keep state across multiple invocations

• The solution: Pass state as part of an argument so ‘static’ can be 
removed

75

This function is called a 

‘reentrant’ function. That 
is, the result is based 
only on the input. Our 

input here is the ‘state’

Reentrant 
function



Thread-Unsafe Functions Class 3

• Functions that return a pointer to a static variable
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Thread-Unsafe Functions Class 3 - Fix

• Functions that return a pointer to a static variable

• The solution: Use locks, and rewrite function to return address of 
variable.

• Extra mutex’s can generally be used to make things thread-safe
• May cost extra, in terms of performance.
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Thread-Unsafe Functions Class 4

• Functions that call thread-unsafe functions

• Any function that calls a thread-unsafe function is now unsafe!

• The solution: do not call thread-unsafe functions

• Document your functions if they are thread-unsafe to prevent 
yourself from making errors!
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Reentrant Functions - Recap

• A function is reentrant if it accesses no shared variables when 
called by multiple threads

• Important to note because:
• These functions require no synchronization
• (It is the only way to fix Class 2 functions and make them thread-safe)
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Ethereum Reentrency Attack
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Poll: thread-safe functions?

• Are the following thread-safe?
• malloc, free, printf, scanf

81

In these 4 alone, 

we would 

certainly have lots 

of problems if not 

thread-safe! 



Example thread-safe functions

• All of the functions in the Standard C Library are thread-safe
• e.g. malloc, free, printf, scanf

• Most Unix system calls are thread-safe. Below are a selection of 
exceptions.  See man pthreads for the full list

82

Time

Networking

Time
Random



Lock implementations
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Implementing Mutual Exclusion

• Typically, developers don’t write their own locking-primitives
• You use an API from the OS or a library

• Why don’t people write their own locks?
• Much more complicated than they at-first appear

• Very, very difficult to get correct

• May require access to privileged instructions

• May require specific assembly instructions
• Instruction set architecture dependent

84



Instruction-level Atomicity

• Atomicity?
• All-or-nothing
• Indivisible (no interleavings)

• Modern CPUs have atomic instruction(s)
• Enable you to build high-level synchronized objects

• On x86:
•  The lock prefix makes an instruction atomic 

• lock inc eax ; atomic increment
• lock dec eax ; atomic decrement

• Only legal with some instructions

• The xchg instruction is guaranteed to be atomic
• xchg eax, [addr] ; swap eax and the value in memory
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Behavior of xchg

• Atomicity ensures that each xchg occurs before or after xchg’s 
from other CPUs

86

eax: 1

1

0

0

eax: 2

2

0

0

0

0

1

1

1

xchg xchg

CPU 1 CPU 2Memory (addr)

eax: 1

1

0

0

eax: 2

2

2

1

xchg

xchg

CPU 1 CPU 2

0

0

1

2

2

Memory (addr)

Non-Atomic xchg Atomic xchg

Illegal execution Legal execution

Ti
m

e

xchg eax [addr]



Building a Spin Lock with xchg

spin_lock:

      mov 1, eax

      xchg [lock_addr], eax

      test eax, eax

      jnz spin_lock

spin_unlock:

      mov 0, [lock_addr]

87

CPU 1 locks.

CPUs 0 and 2 both try 

to lock, but cannot.

CPU 1 unlocks.

CPU 0 locks, simply 

because it requested 
it slightly before CPU 
2. 

If (1st & 2nd) == 0 then ZF=1
else  ZF=0
…

Do you see any problem with spinlocks?
How can we prevent this?



Building a Multi-CPU Mutex
(avoids extensive spinning)

88

typedef struct mutex_struct {

int spinlock = 0; // spinlock variable

int locked = 0;   // is the mutex locked? guarded by spinlock

queue waitlist;   // waiting threads, guarded by spinlock

} mutex;

void mutex_lock(mutex * m) {

spin_lock(&m->spinlock);

if (!m->locked){

m->locked = 1;

spin_unlock(&m->spinlock);

}

else { 

m->waitlist.add(current_process);

spin_unlock(&m->spinlock);

yield();

// wake up here when the mutex is acquired

}

}



Building a Multi-CPU Mutex
(avoids extensive spinning)

89

typedef struct mutex_struct {

int spinlock = 0; // spinlock variable

int locked = 0;   // is the mutex locked? guarded by spinlock

queue waitlist;   // waiting threads, guarded by spinlock

} mutex;

void mutex_unlock(mutex * m) {

spin_lock(&m->spinlock);

if (m->waitlist.empty()) {

m->locked = 0;

spin_unlock(&m->spinlock);

}

else {

next_thread = m->waitlist.pop_from_head();

spin_unlock(&m->spinlock);

wake(next_thread);

}

}



Semaphores
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Semaphores

• Generalization of a mutex
• Invented by Edsger Dijkstra
• Associated with a positive integer N
• May be locked by up to N concurrent threads

• Semaphore methods
• sem_wait(): N--; if N < 0 then sleep; 

• Wait/aquire/lock
• Also commonly known as P (proberen – test) operation

• sem_post(): N++; if waiting threads > 0, wake one up; // a.k.a. V()
• Unlock
• Also commonly known as V (verhogen – increment) operation

• Depending on the initial value N, interesting features can be implemented
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C semaphore programming example

• API
• #include <semaphore.h>

• int sem_init(sem_t *s, 0, unsigned int val)
• Second argument: shared among threads (0) vs processes (non-zero)
• Third argument: initial value of N

• int sem_wait(sem_t *s);

• int sem_post(sem_t *s);

• Int sem_destroy(sem_t *sem);
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Semaphore

sem_t s;

sem_init(&s, 0, N);

int sem_wait(sem_t *s) {

 // executes atomically
 decrement the value of semaphore s by one

 wait if value of semaphore s is negative
}

int sem_post(sem_t *s) {

 // executes atomically

 increment the value of semaphore s by one

 if there are one or more threads waiting, wake one

}

May have slightly different 
descriptions:
waits for semaphore to become != 0, 
decrements it by 1 atomically



Using semaphores for mutual exclusion

sem_t s;

sem_init(&s, 0, N);

int sem_wait(sem_t *s) {

 // executes atomically
 decrement the value of semaphore s by one

 wait if value of semaphore s is negative
}

int sem_post(sem_t *s) {

 // executes atomically

 increment the value of semaphore s by one

 if there are one or more threads waiting, wake one

}

How would you use semaphore 
to implement a mutex lock?



Using semaphores for mutual exclusion

• Basic Idea:
• Associate a unique semaphore S, initially 1

• (i.e. 1 spot open for a thread to enter)

• Binary semaphore

• Surround corresponding critical sections with P(S) and V(S) operations
• P operation: “locking” the mutex

• V operation: “unlocking” or “releasing” the mutex

• “Holding” a mutex: locked and not yet unlocked

• Counting semaphore (semaphore initialized to greater than 1)
• Used as a counter for set of available resources.
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The Bounded Buffer Problem
• We want to keep the buffer size to a limit

• Multiple threads puts and gets from the buffer

list      buffer

put(item):

    if len(buffer) >= N

        return ERROR

    else

        buffer.add_tail(item)

get():

    if len(buffer) == 0

        return NULL

    else

        return buffer.remove_head()

list      buffer

mutex     m

put(item):

    m.lock()

    if len(buffer) >= N

        m.unlock()

        return ERROR

    else

        buffer.add_tail(item)

        m.unlock()

Get():

    m.lock()

    if len(buffer) == 0

        m.unlock()

        return NULL

    else

        tmp = buffer.remove_head()

        m.unlock()

        return tmp

What is the issue and how could semaphore improve?



The Bounded Buffer Problem
• Use of semaphore can limit the number of threads that can 

put/get at the same time

• No need to re-execute put/get when space/item is not available 
but wait instead for space/item to be available
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class semaphore_bounded_buffer:

  mutex     m

  list      buffer

  semaphore S_space = semaphore(N)

  semaphore S_items = semaphore(0)

get():

    S_items.wait()

    m.lock()

    result = buffer.remove_head()

    m.unlock()

    S_space.post()

    return result

put(item):

      S_space.wait()

      m.lock()

      buffer.add_tail(item)

      m.unlock()

      S_items.post()



Example Bounded Buffer

buffer S_items S_space

[] 0 2

[a] 1 1

[a, b] 2 0

[a, b] 2 -1

[b] 1 0

[b, c] 2 0
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Thread 1 Thread 2 Thread 3 Thread 4

put(a)

put(b)

put(c)

get()



Signaling and condition variables
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When is a Semaphore Not Enough?

• In this case, semaphores are not sufficient
• weight is an unknown parameter

• Weight does not exactly match the number put operations
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class weighted_bounded_buffer:

  mutex     m

  list      buffer

  int       totalweight

put(item):

  m.lock()

  buffer.add_tail(item)

  totalweight += item.weight

  m.unlock()

• No guarantee the condition will 
be satisfied when this thread 
wakes up

• Lots of useless looping :(

get(weight):

  while (1):

    m.lock()

    if totalweight >= weight:

      result = buffer.remove_head()

      totalweight -= result.weight

      m.unlock()

      return result

    else:

      m.unlock()

      yield()

• Get only if buffer’s total weight 
is bigger than the given weight



Condition Variables

• Construct for managing control flow among competing threads
• Each condition variable is associated with a mutex

• Threads that cannot run yet wait() for a condition to become satisfied

• When the condition is met, other thread signal() the waiting thread(s)

• Condition variables are not locks
• They are control-flow managers

• Some APIs combine the mutex and the condition variable, which 
makes things slightly easier
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Condition Variable Example
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class weighted_bounded_buffer:

  mutex     m

  condition c

  list      buffer

  int       totalweight = 0

  int       neededweight = 0

put(item):

  m.lock()

  buffer.add_tail(item)

  totalweight += item.weight

  if totalweight >= neededweight

          and neededweight > 0:

    c.signal(m)

  else:

    m.unlock()

• wait() unlocks the mutex 
and blocks the thread

• When wait() returns, the 
mutex is locked

• signal() hands the locked mutex 
to a waiting thread

• In essence, we have built a construct of the form:
wait_until(totalweight >= weight)

get(weight):

  m.lock()

  if totalweight < weight:

    neededweight += weight

    c.wait(m)

  neededweight -= weight  

  result = buffer.remove_head()

  totalweight -= result.weight

  m.unlock()

  return result



Use a condition variable

• Two operations: wait() and signal() and their matching APIs in 
pthread library

• wait(): a thread wishes to put itself to sleep

• pthread_cond_wait()

• signal(): when a condition has changed and a thread needs to be 
awoken from sleep

• pthread_cond_signal()

103



Use a condition variable
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int main(int argc, char *argv[]) {

    pthread_t p;

    printf("parent: begin\n");

    pthread_create(&p, NULL, child, NULL);

    pthread_mutex_lock(&m);

    while (done == 0) {

           // releases lock when going to sleep

 pthread_cond_wait(&c, &m); 

           // when woken up it automatically

           // acquires the lock

    }

    pthread_mutex_unlock(&m);

    printf("parent: end\n");

    return 0;

}

pthread_cond_t  c = PTHREAD_COND_INITIALIZER;
pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
int done = 0;

void *child(void *arg) {
    printf("child\n");
    sleep(1);

    pthread_mutex_lock(&m);
    
    done = 1;

    pthread_cond_signal(&c);

    pthread_mutex_unlock(&m);

    sleep(10);
    return NULL;
}



Summary of Synchronization

• Programmers need a clear model of how variables are shared by 
threads

• Variables shared by multiple threads must be protected to ensure 
mutually exclusive access

• Deadlocks must be prevented

• Synchronization primitives
• Mutex

• Semaphores

• Condition variables
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