
Concurrency (2)

Week 9

CS 3650 Computer Systems – Summer 2025

* Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, Ji-Yong Shin's and Alden Jackson’s lecture slides for the same course.

Bank Transactions

2

A series (i.e. serial) of Bank Transactions

1. If I start with $25 in my checking account.

2. Then I deposit $50, I have $75.

3. If I then withdraw $50, I now have $25.

4. My final balance is $25.

5. There is a variable checkings that monitors our balance.

3

Concurrent Bank Transaction

1. If I start with $25 in my checking account.

2. Then I deposit $50 and withdraw $50 at the same time (concurrently)

3. My final balance should still be $25.

4. There is a shared variable checkings in each
thread that monitors our balance.

4

Read our initial balance

5

checkings = 25

Thread Z:
checkings = ??

deposit(50)

checkings = ??

Thread Y:
checkings = ??
withdraw(50)
checkings = ??

checkings = ???

Ti
m

e Thread ZThread Y

Okay, we have $25 – now move on

6

checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = ??

Thread Y:
checkings = 25
withdraw(50)
checkings = ??

checkings = ???

Ti
m

e Thread ZThread Y

withdraw and deposit occur (Thread Y and Z)

7

checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = ??

Thread Y:
checkings = 25
withdraw(50)
checkings = ??

checkings = ???

Ti
m

e Thread ZThread Y

Checkings from Thread Y updates first

8

checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = ??

Thread Y:
checkings = 25
withdraw(50)

checkings = -25

checkings = ???

Ti
m

e Thread ZThread Y

(Thread Z) updates its checkings value shortly after

9

checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = 75

Thread Y:
checkings = 25
withdraw(50)

checkings = -25

checkings = ???

Ti
m

e Thread ZThread Y

Now we have conflicting information

10

checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = 75

Thread Y:
checkings = 25
withdraw(50)

checkings = -25

checkings = ???

Ti
m

e Thread ZThread Y

checkings stores the last value of 75 (Thread Z)

11

checkings = 25

Thread Z:
checkings = 25

deposit(50)

checkings = 75

Thread Y:
checkings = 25
withdraw(50)

checkings = -25

checkings = 75

Ti
m

e

checkings = 75checkings = 75

Thread ZThread Y

checkings = -25

What if these operations had swapped!

12

checkings = 25

checkings = 25
deposit(50)

checkings = 75

checkings = 25
withdraw(50)

checkings = -25

checkings = ???

Ti
m

e Thread ZThread Y

checkings = 75
checkings = -25

This time our balance is -25! (Thread Y)

13

checkings = 25

checkings = 25
deposit(50)

checkings = 75

checkings = 25
withdraw(50)

checkings = -25

checkings = -25

Ti
m

e Thread ZThread Y

checkings = -25
checkings = 75

How about if Thread Z lags behind Thread Y?

14

checkings = 25

checkings = ??
deposit(50)

checkings = ??

checkings = ??
withdraw(50)
checkings = ??

checkings = ??

Ti
m

e

Thread ZThread Y

How about if Thread Z lags behind Thread Y?

15

checkings = 25

checkings = ??
deposit(50)

checkings = ??

checkings = 25
withdraw(50)

checkings = -25

checkings = -25

Ti
m

e

Thread ZThread Y

How about if Thread Z lags behind Thread Y?

16

checkings = -25

checkings = ??
deposit(50)

checkings = ??

checkings = 25
withdraw(50)

checkings = -25

checkings = ??

Ti
m

e

Thread ZThread Y

How about if Thread Z lags behind Thread Y?

17

checkings = -25

checkings = -25
deposit(50)

checkings = ??

checkings = 25
withdraw(50)

checkings = -25

checkings = ??

Ti
m

e

Thread ZThread Y

Okay—this time we happen to get 25

18

checkings = -25

checkings = -25
deposit(50)

checkings = 25

checkings = 25
withdraw(50)

checkings = -25

checkings = 25 ok

Ti
m

e

Thread ZThread Y

We have witnessed a data race

A common concurrency problem

19

checkings = -25 checkings = 25 okcheckings = 75

We need to synchronize – enforce ordering

20

checkings = 25

Thread Y:
checkings = 25
withdraw(50)

Thread Z:
checkings = -25

deposit(50)

checkings = 25 always correct

Ti
m

e

(The Bug!)

• What is wrong with this
program?

• The problem is we have a
global “counter” that is shared

• There is an interleaving of
instructions here.

• Any possible interleaving can
occur!

• Solution is to add locks!

21

What Data is Shared in Threaded C Programs?

• Global variables are shared
• We just saw an example with counter.
• (Note: the compilers can be smart)

• (“counter” is only shared if it is referenced within the thread, otherwise
do not copy it.)

22

Threads Memory Model: Conceptual

• Multiple threads run within the context of a single process

• Each thread has its own separate thread context
• Thread ID, stack, stack pointer, PC, condition codes, and General

Purpose Registers

• All threads share the remaining process context
• Code, data, heap, and shared library segments for virtual address

space
• Open files

23

Threads Memory Model: Actual

• Separation of data is not strictly enforced:
• Register values are truly separate and protected
• Any thread however, can read and write the stack of any other thread

24

Mapping Variable Instances to Memory

• Global Variables
• Definition: Variable declared outside of a function
• Virtual Memory contains exactly one instance of any global variable

• Local Variables
• Definition: Variable declared inside function without static attribute
• Each thread stack contains one instance of each local variable

• Local static variables
• Definition: Variables declared inside function with the static attribute
• Virtual memory contains exactly one instance of any local static

variable.

25

Mapping Variable Instances to Memory

• 1 main thread “m” and two threads “p0” and “p1”

26

Shared Variable Analysis

• 1 main thread “m” and two threads “p0” and “p1”

27

Shared Variable Analysis

28

ptr?

Shared Variable Analysis

29

Global

Shared Variable Analysis

30

cnt?

Shared Variable Analysis

31

All threads share

this ‘static’ value

Shared Variable Analysis

32

i.m?

Shared Variable Analysis

33

Shared?

Shared Variable Analysis

34

Shared?
Yes.

Shared Variable Analysis

35

msgs?

(careful)

Shared Variable Analysis

36

We have a ‘ptr’ to msg,

so effectively shared

Shared Variable Analysis

37

myid.p0?

Shared Variable Analysis

38

Local to peer

thread 0 only

Shared Variable Analysis

39

So for

myid.p1?

Shared Variable Analysis

40

Local to peer

thread 1 only

Synchronization of Threads

• Shared variables are thus handy for moving around data

• But if we do not share properly, we can have synchronization
errors!

• There is a solution however!
• (recap below)

41

=

We need a tool to protect shared resources

void deposit (float amount)

{

 checkings += amount;

}

42

Why to be careful with locks

43

Correctness (can be) Easy
Performance Hard

 withdraw(…) {…}

 deposit(…) {…}

 addInterest(…) {…}

 checkMinBalance(…) {…}

 chargeFee(…) {…}

 printBalance(…) {…}

44

Simply add locks!

lock

lock

lock

lock

lock

lock

Correctness (can be) Easy
Performance Hard

 withdraw(…) {…}

 deposit(…) {…}

 addInterest(…) {…}

 checkMinBalance(…) {…}

 chargeFee(…) {…}

 printBalance(…) {…}

45

Simply add locks!

lock

lock

lock

lock

lock

lock

Good job—
no data races

here!

By Max Roser, Hannah Ritchie - https://ourworldindata.org/uploads/2020/11/Transistor-Count-over-time.png, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=98219918

Your program runs
sequentially– did you
forget about Amdahl’s

law?

Correctness (can be) Easy
Performance Hard

46

Where should we place locks?

• Suppose we have a shared counter which we increment by some
precomputed value

47

int cumulative_time = 0; // global variable

Int main(void) {
 …
 for (int i = 0; i < 100; i++)
 pthread_create(&tid[i], NULL,
 thread, NULL);
 …
 // joins all threads
 …
 printf(“cumulative time %d\n”,
 cumulative_time);
 return 0;
}

void *thread(void *argv) {
 int start = get_current_time_in_int();

 int tmp = 0;
 for (int i = 0; i < 100000; i++) {
 tmp += I;
 }

 int end = get_current time_in_int();
 int elapsed = end – start;

 cumulative_time += elapsed;
}

Critical Sections

• These examples highlight the critical section problem

• Classical definition of a critical section:

“A piece of code that accesses a shared resource that MUST NOT be
concurrently accessed by more than one thread of execution.”

• Unfortunately, this definition is somewhat misleading
• Implies that the piece of code is the problem

• In fact, the shared resource is the root of the problem

48

Concurrent queue example

49

typedef struct node {
 int value;
 struct node *next;
} node_t;

typedef struct queue {
 node_t *head;
 node_t *tail;
} queue_t;

void queue_enqueue(queue_t *q, int value) {
 node_t *tmp = malloc(sizeof(node_t));

 tmp->value = value;
 tmp->next = NULL;

 q->tail->next = tmp;
 q->tail = tmp;
}

int queue_dequeue(queue_t *q, int *value) {
 node_t *tmp = q->head;
 node_t *new_head = tmp->next;

 if (new_head == NULL)
 return -1; // queue was empty

 *value = new_head->value;
 q->head = new_head;
 free(tmp);
 return 0;
}

queue_t *queue_new() {
 queue_t *q = malloc(sizeof(queue_t));
 node node_t *tmp =
 malloc(sizeof(node_t));
 tmp->next = NULL;
 q->head = q->tail = tmp;
 return q;
}

Queue

50

dummy 1 2head

tail tailtail

void queue_enqueue(queue_t *q, int value) {
 node_t *tmp = malloc(sizeof(node_t));

 tmp->value = value;
 tmp->next = NULL;

 q->tail->next = tmp;
 q->tail = tmp;
}

int queue_dequeue(queue_t *q, int *value) {
 node_t *tmp = q->head;
 node_t *new_head = tmp->next;

 if (new_head == NULL)
 return -1; // queue was empty

 *value = tmp->value;
 q->head = new_head;
 free(tmp);
 return 0;
}

head
head

Queue (enqueue race)

51

dummy 1

2

head

tail

3

tail

tail

void queue_enqueue(queue_t *q, int value) {
 node_t *tmp = malloc(sizeof(node_t));

 tmp->value = value;
 tmp->next = NULL;

 q->tail->next = tmp;
 q->tail = tmp;
}

int queue_dequeue(queue_t *q, int *value) {
 node_t *tmp = q->head;
 node_t *new_head = tmp->next;

 if (new_head == NULL)
 return -1; // queue was empty

 *value = new_head->value;
 q->head = new_head;
 free(tmp);
 return 0;
}

Queue (dequeue race)

52

dummy 1head

tail

void queue_enqueue(queue_t *q, int value) {
 node_t *tmp = malloc(sizeof(node_t));

 tmp->value = value;
 tmp->next = NULL;

 q->tail->next = tmp;
 q->tail = tmp;
}

int queue_dequeue(queue_t *q, int *value) {
 node_t *tmp = q->head;
 node_t *new_head = tmp->next;

 if (new_head == NULL)
 return -1; // queue was empty

 *value = new_head->value;
 q->head = new_head;
 free(tmp);
 return 0;
}

head

head

Free twice

Queue (fixes)

• Use a lock
• Problems?

• Can use two different locks
• Tail lock, head lock

53

void queue_enqueue(queue_t *q, int value) {
 node_t *tmp = malloc(sizeof(node_t));

 tmp->value = value;
 tmp->next = NULL;

 q->tail->next = tmp;
 q->tail = tmp;
}

int queue_dequeue(queue_t *q, int *value) {
 node_t *tmp = q->head;
 node_t *new_head = tmp->next;

 if (new_head == NULL)
 return -1; // queue was empty

 *value = new_head->value;
 q->head = new_head;
 free(tmp);
 return 0;
}

dummy 1 2head

tail

54

Threads Memory Model: Conceptual

• Multiple threads run within the context of a single process

• Each thread has its own separate thread context
• Thread ID, stack, stack pointer, PC, condition codes, and General

Purpose Registers

• All threads share the remaining process context
• Code, data, heap, and shared library segments for virtual address

space
• Open files

55

Threads Memory Model: Actual

• Separation of data is not strictly enforced:
• Register values are truly separate and protected
• Any thread however, can read and write the stack of any other thread

56

Mapping Variable Instances to Memory

• Global Variables
• Definition: Variable declared outside of a function
• Virtual Memory contains exactly one instance of any global variable

• Local Variables
• Definition: Variable declared inside function without static attribute
• Each thread stack contains one instance of each local variable

• Local static variables
• Definition: Variables declared inside function with the static attribute
• Virtual memory contains exactly one instance of any local static

variable.

57

Critical Sections

• These examples highlight the critical section problem

• Classical definition of a critical section:

“A piece of code that accesses a shared resource that MUST NOT be
concurrently accessed by more than one thread of execution.”

• Unfortunately, this definition is somewhat misleading
• Implies that the piece of code is the problem

• In fact, the shared resource is the root of the problem

59

Where should we place locks?

• Suppose we have a shared counter which we increment by some
precomputed value

60

int cumulative_time = 0; // global variable

Int main(void) {
 …
 for (int i = 0; i < 100; i++)
 pthread_create(&tid[i], NULL,
 thread, NULL);
 …
 // joins all threads
 …
 printf(“cumulative time %d\n”,
 cumulative_time);
 return 0;
}

void *thread(void *argv) {
 int start = get_current_time_in_int();

 int tmp = 0;
 for (int i = 0; i < 100000; i++) {
 tmp += I;
 }

 int end = get_current time_in_int();
 int elapsed = end – start;

 cumulative_time += elapsed;
}

What can go wrong with locks?

• Forgetting to unlock
• Other threads wait indefinitely and program can freeze

• Unlocking more than once
• Undefined behavior

• Locking more than once
• Thread blocks at the second call

61

Deadlocks

62

Layers
of Locks

63

mutex A

mutex B

Thread 1

lock A

lock B

// do something

unlock B

unlock A

Thread 2

lock B

lock A

// do something

unlock A

unlock B

Thread 1 Thread 2

lock(A)

lock(B)

unlock(B)

unlock(b)

lock(B)

lock(A)

unlock(A)

unlock(B)

Thread 1 Thread 2

lock(A)

lock(B)

lock(B)

unlock(B)

unlock(A) lock(A)

unlock(A)

unlock(B)

Thread 1 Thread 2

lock(A) lock(B)

lock(B) lock(A)

Deadlock :(

Deadlock

• Four necessary conditions
• Mutual exclusion

• Only one owner is allowed for the resource

• Hold and wait
• Holding on one or more resources and waiting to acquire more

• No preemption
• Resources cannot be taken away

• Circular wait
• Holding on a resource and waiting for others in circular manner

• Removing one or more conditions will resolve deadlocks
• Use of try_lock and releasing existing resources upon trying to lock

• Carefully ordering lock function call orders to avoid circular waits

64

pthread_mutex_trylock

• Tries to acquire lock
• If successful, return true and

proceed with exclusive access

• Else return false and proceed
without exclusive access

• Why is unlock() called only
inside if statement?

• What is the final counter
value if 10 threads execute
concurrently?

65

pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

int counter = 0;

void *thread (void *argv) {
 for (int i = 0; i < 10; i++) {
 if (pthread_mutex_tryloc(&mtx)) {
 counter = counter + 1;
 pthread_mutex_unlock(&mtx);
 }
 }
}

Thread safety

66

Thread Safety

• Functions called from a thread need to be ‘thread-safe’

• A Function is thread-safe if it:
• Always produces correct results
• When called repeatedly from multiple concurrent threads.

67

Thread-Safety Classes

• Class 1: Functions that do not protect shared variables

• Class 2: Functions that keep state across multiple invocations

• Class 3: Functions that return a pointer to a static variable

• Class 4: Functions that call thread-unsafe functions

68

Thread-Unsafe Functions Class 1

• Functions that do not protect shared variables

69

Thread-Unsafe Functions Class 1 - Fix

• Functions that do not protect shared variables

• The solution: Ensure locks are around everything

70

Thread-Unsafe Functions Class 2

• Functions that keep state across multiple invocations

71

Thread-Unsafe Functions Class 2

• Functions that keep state across multiple invocations

72

rand() is a classic example. In

fact, why might we not want a
race condition in our random
number generator?

Thread-Unsafe Functions Class 2

• Functions that keep state across multiple invocations

73

Ans: May want

repeatability for testing. So
since rand is deterministic,
we don’t want multiple

threads returning the same
value

Thread-Unsafe Functions Class 2 - Fix

• Functions that keep state across multiple invocations

• The solution: Pass state as part of an argument so ‘static’ can be
removed

74

Thread-Unsafe Functions Class 2 - Fix

• Functions that keep state across multiple invocations

• The solution: Pass state as part of an argument so ‘static’ can be
removed

75

This function is called a

‘reentrant’ function. That
is, the result is based
only on the input. Our

input here is the ‘state’

Reentrant
function

Thread-Unsafe Functions Class 3

• Functions that return a pointer to a static variable

76

Thread-Unsafe Functions Class 3 - Fix

• Functions that return a pointer to a static variable

• The solution: Use locks, and rewrite function to return address of
variable.

• Extra mutex’s can generally be used to make things thread-safe
• May cost extra, in terms of performance.

77

Thread-Unsafe Functions Class 4

• Functions that call thread-unsafe functions

• Any function that calls a thread-unsafe function is now unsafe!

• The solution: do not call thread-unsafe functions

• Document your functions if they are thread-unsafe to prevent
yourself from making errors!

78

Reentrant Functions - Recap

• A function is reentrant if it accesses no shared variables when
called by multiple threads

• Important to note because:
• These functions require no synchronization
• (It is the only way to fix Class 2 functions and make them thread-safe)

79

Ethereum Reentrency Attack

80

Poll: thread-safe functions?

• Are the following thread-safe?
• malloc, free, printf, scanf

81

In these 4 alone,

we would

certainly have lots

of problems if not

thread-safe!

Example thread-safe functions

• All of the functions in the Standard C Library are thread-safe
• e.g. malloc, free, printf, scanf

• Most Unix system calls are thread-safe. Below are a selection of
exceptions. See man pthreads for the full list

82

Time

Networking

Time
Random

Lock implementations

83

Implementing Mutual Exclusion

• Typically, developers don’t write their own locking-primitives
• You use an API from the OS or a library

• Why don’t people write their own locks?
• Much more complicated than they at-first appear

• Very, very difficult to get correct

• May require access to privileged instructions

• May require specific assembly instructions
• Instruction set architecture dependent

84

Instruction-level Atomicity

• Atomicity?
• All-or-nothing
• Indivisible (no interleavings)

• Modern CPUs have atomic instruction(s)
• Enable you to build high-level synchronized objects

• On x86:
• The lock prefix makes an instruction atomic

• lock inc eax ; atomic increment
• lock dec eax ; atomic decrement

• Only legal with some instructions

• The xchg instruction is guaranteed to be atomic
• xchg eax, [addr] ; swap eax and the value in memory

85

Behavior of xchg

• Atomicity ensures that each xchg occurs before or after xchg’s
from other CPUs

86

eax: 1

1

0

0

eax: 2

2

0

0

0

0

1

1

1

xchg xchg

CPU 1 CPU 2Memory (addr)

eax: 1

1

0

0

eax: 2

2

2

1

xchg

xchg

CPU 1 CPU 2

0

0

1

2

2

Memory (addr)

Non-Atomic xchg Atomic xchg

Illegal execution Legal execution

Ti
m

e

xchg eax [addr]

Building a Spin Lock with xchg

spin_lock:

 mov 1, eax

 xchg [lock_addr], eax

 test eax, eax

 jnz spin_lock

spin_unlock:

 mov 0, [lock_addr]

87

CPU 1 locks.

CPUs 0 and 2 both try

to lock, but cannot.

CPU 1 unlocks.

CPU 0 locks, simply

because it requested
it slightly before CPU
2.

If (1st & 2nd) == 0 then ZF=1
else ZF=0
…

Do you see any problem with spinlocks?
How can we prevent this?

Building a Multi-CPU Mutex
(avoids extensive spinning)

88

typedef struct mutex_struct {

int spinlock = 0; // spinlock variable

int locked = 0; // is the mutex locked? guarded by spinlock

queue waitlist; // waiting threads, guarded by spinlock

} mutex;

void mutex_lock(mutex * m) {

spin_lock(&m->spinlock);

if (!m->locked){

m->locked = 1;

spin_unlock(&m->spinlock);

}

else {

m->waitlist.add(current_process);

spin_unlock(&m->spinlock);

yield();

// wake up here when the mutex is acquired

}

}

Building a Multi-CPU Mutex
(avoids extensive spinning)

89

typedef struct mutex_struct {

int spinlock = 0; // spinlock variable

int locked = 0; // is the mutex locked? guarded by spinlock

queue waitlist; // waiting threads, guarded by spinlock

} mutex;

void mutex_unlock(mutex * m) {

spin_lock(&m->spinlock);

if (m->waitlist.empty()) {

m->locked = 0;

spin_unlock(&m->spinlock);

}

else {

next_thread = m->waitlist.pop_from_head();

spin_unlock(&m->spinlock);

wake(next_thread);

}

}

Semaphores

90

Semaphores

• Generalization of a mutex
• Invented by Edsger Dijkstra
• Associated with a positive integer N
• May be locked by up to N concurrent threads

• Semaphore methods
• sem_wait(): N--; if N < 0 then sleep;

• Wait/aquire/lock
• Also commonly known as P (proberen – test) operation

• sem_post(): N++; if waiting threads > 0, wake one up; // a.k.a. V()
• Unlock
• Also commonly known as V (verhogen – increment) operation

• Depending on the initial value N, interesting features can be implemented

91

C semaphore programming example

• API
• #include <semaphore.h>

• int sem_init(sem_t *s, 0, unsigned int val)
• Second argument: shared among threads (0) vs processes (non-zero)
• Third argument: initial value of N

• int sem_wait(sem_t *s);

• int sem_post(sem_t *s);

• Int sem_destroy(sem_t *sem);

92

Semaphore

sem_t s;

sem_init(&s, 0, N);

int sem_wait(sem_t *s) {

 // executes atomically
 decrement the value of semaphore s by one

 wait if value of semaphore s is negative
}

int sem_post(sem_t *s) {

 // executes atomically

 increment the value of semaphore s by one

 if there are one or more threads waiting, wake one

}

May have slightly different
descriptions:
waits for semaphore to become != 0,
decrements it by 1 atomically

Using semaphores for mutual exclusion

sem_t s;

sem_init(&s, 0, N);

int sem_wait(sem_t *s) {

 // executes atomically
 decrement the value of semaphore s by one

 wait if value of semaphore s is negative
}

int sem_post(sem_t *s) {

 // executes atomically

 increment the value of semaphore s by one

 if there are one or more threads waiting, wake one

}

How would you use semaphore
to implement a mutex lock?

Using semaphores for mutual exclusion

• Basic Idea:
• Associate a unique semaphore S, initially 1

• (i.e. 1 spot open for a thread to enter)

• Binary semaphore

• Surround corresponding critical sections with P(S) and V(S) operations
• P operation: “locking” the mutex

• V operation: “unlocking” or “releasing” the mutex

• “Holding” a mutex: locked and not yet unlocked

• Counting semaphore (semaphore initialized to greater than 1)
• Used as a counter for set of available resources.

95

The Bounded Buffer Problem
• We want to keep the buffer size to a limit

• Multiple threads puts and gets from the buffer

list buffer

put(item):

 if len(buffer) >= N

 return ERROR

 else

 buffer.add_tail(item)

get():

 if len(buffer) == 0

 return NULL

 else

 return buffer.remove_head()

list buffer

mutex m

put(item):

 m.lock()

 if len(buffer) >= N

 m.unlock()

 return ERROR

 else

 buffer.add_tail(item)

 m.unlock()

Get():

 m.lock()

 if len(buffer) == 0

 m.unlock()

 return NULL

 else

 tmp = buffer.remove_head()

 m.unlock()

 return tmp

What is the issue and how could semaphore improve?

The Bounded Buffer Problem
• Use of semaphore can limit the number of threads that can

put/get at the same time

• No need to re-execute put/get when space/item is not available
but wait instead for space/item to be available

97

class semaphore_bounded_buffer:

 mutex m

 list buffer

 semaphore S_space = semaphore(N)

 semaphore S_items = semaphore(0)

get():

 S_items.wait()

 m.lock()

 result = buffer.remove_head()

 m.unlock()

 S_space.post()

 return result

put(item):

 S_space.wait()

 m.lock()

 buffer.add_tail(item)

 m.unlock()

 S_items.post()

Example Bounded Buffer

buffer S_items S_space

[] 0 2

[a] 1 1

[a, b] 2 0

[a, b] 2 -1

[b] 1 0

[b, c] 2 0

98

Thread 1 Thread 2 Thread 3 Thread 4

put(a)

put(b)

put(c)

get()

Signaling and condition variables

99

When is a Semaphore Not Enough?

• In this case, semaphores are not sufficient
• weight is an unknown parameter

• Weight does not exactly match the number put operations

100

class weighted_bounded_buffer:

 mutex m

 list buffer

 int totalweight

put(item):

 m.lock()

 buffer.add_tail(item)

 totalweight += item.weight

 m.unlock()

• No guarantee the condition will
be satisfied when this thread
wakes up

• Lots of useless looping :(

get(weight):

 while (1):

 m.lock()

 if totalweight >= weight:

 result = buffer.remove_head()

 totalweight -= result.weight

 m.unlock()

 return result

 else:

 m.unlock()

 yield()

• Get only if buffer’s total weight
is bigger than the given weight

Condition Variables

• Construct for managing control flow among competing threads
• Each condition variable is associated with a mutex

• Threads that cannot run yet wait() for a condition to become satisfied

• When the condition is met, other thread signal() the waiting thread(s)

• Condition variables are not locks
• They are control-flow managers

• Some APIs combine the mutex and the condition variable, which
makes things slightly easier

101

Condition Variable Example

102

class weighted_bounded_buffer:

 mutex m

 condition c

 list buffer

 int totalweight = 0

 int neededweight = 0

put(item):

 m.lock()

 buffer.add_tail(item)

 totalweight += item.weight

 if totalweight >= neededweight

 and neededweight > 0:

 c.signal(m)

 else:

 m.unlock()

• wait() unlocks the mutex
and blocks the thread

• When wait() returns, the
mutex is locked

• signal() hands the locked mutex
to a waiting thread

• In essence, we have built a construct of the form:
wait_until(totalweight >= weight)

get(weight):

 m.lock()

 if totalweight < weight:

 neededweight += weight

 c.wait(m)

 neededweight -= weight

 result = buffer.remove_head()

 totalweight -= result.weight

 m.unlock()

 return result

Use a condition variable

• Two operations: wait() and signal() and their matching APIs in
pthread library

• wait(): a thread wishes to put itself to sleep

• pthread_cond_wait()

• signal(): when a condition has changed and a thread needs to be
awoken from sleep

• pthread_cond_signal()

103

Use a condition variable

104

int main(int argc, char *argv[]) {

 pthread_t p;

 printf("parent: begin\n");

 pthread_create(&p, NULL, child, NULL);

 pthread_mutex_lock(&m);

 while (done == 0) {

 // releases lock when going to sleep

 pthread_cond_wait(&c, &m);

 // when woken up it automatically

 // acquires the lock

 }

 pthread_mutex_unlock(&m);

 printf("parent: end\n");

 return 0;

}

pthread_cond_t c = PTHREAD_COND_INITIALIZER;
pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
int done = 0;

void *child(void *arg) {
 printf("child\n");
 sleep(1);

 pthread_mutex_lock(&m);

 done = 1;

 pthread_cond_signal(&c);

 pthread_mutex_unlock(&m);

 sleep(10);
 return NULL;
}

Summary of Synchronization

• Programmers need a clear model of how variables are shared by
threads

• Variables shared by multiple threads must be protected to ensure
mutually exclusive access

• Deadlocks must be prevented

• Synchronization primitives
• Mutex

• Semaphores

• Condition variables

105

	Slide 1: Concurrency (2)
	Slide 2
	Slide 3: A series (i.e. serial) of Bank Transactions
	Slide 4: Concurrent Bank Transaction
	Slide 5: Read our initial balance
	Slide 6: Okay, we have $25 – now move on
	Slide 7: withdraw and deposit occur (Thread Y and Z)
	Slide 8: Checkings from Thread Y updates first
	Slide 9: (Thread Z) updates its checkings value shortly after
	Slide 10: Now we have conflicting information
	Slide 11: checkings stores the last value of 75 (Thread Z)
	Slide 12: What if these operations had swapped!
	Slide 13: This time our balance is -25! (Thread Y)
	Slide 14: How about if Thread Z lags behind Thread Y?
	Slide 15: How about if Thread Z lags behind Thread Y?
	Slide 16: How about if Thread Z lags behind Thread Y?
	Slide 17: How about if Thread Z lags behind Thread Y?
	Slide 18: Okay—this time we happen to get 25
	Slide 19: We have witnessed a data race
	Slide 20: We need to synchronize – enforce ordering
	Slide 21: (The Bug!)
	Slide 22: What Data is Shared in Threaded C Programs?
	Slide 23: Threads Memory Model: Conceptual
	Slide 24: Threads Memory Model: Actual
	Slide 25: Mapping Variable Instances to Memory
	Slide 26: Mapping Variable Instances to Memory
	Slide 27: Shared Variable Analysis
	Slide 28: Shared Variable Analysis
	Slide 29: Shared Variable Analysis
	Slide 30: Shared Variable Analysis
	Slide 31: Shared Variable Analysis
	Slide 32: Shared Variable Analysis
	Slide 33: Shared Variable Analysis
	Slide 34: Shared Variable Analysis
	Slide 35: Shared Variable Analysis
	Slide 36: Shared Variable Analysis
	Slide 37: Shared Variable Analysis
	Slide 38: Shared Variable Analysis
	Slide 39: Shared Variable Analysis
	Slide 40: Shared Variable Analysis
	Slide 41: Synchronization of Threads
	Slide 42: We need a tool to protect shared resources
	Slide 43
	Slide 44: Correctness (can be) Easy Performance Hard
	Slide 45: Correctness (can be) Easy Performance Hard
	Slide 46: Correctness (can be) Easy Performance Hard
	Slide 47: Where should we place locks?
	Slide 48: Critical Sections
	Slide 49: Concurrent queue example
	Slide 50: Queue
	Slide 51: Queue (enqueue race)
	Slide 52: Queue (dequeue race)
	Slide 53: Queue (fixes)
	Slide 54
	Slide 55: Threads Memory Model: Conceptual
	Slide 56: Threads Memory Model: Actual
	Slide 57: Mapping Variable Instances to Memory
	Slide 59: Critical Sections
	Slide 60: Where should we place locks?
	Slide 61: What can go wrong with locks?
	Slide 62
	Slide 63: Layers of Locks
	Slide 64: Deadlock
	Slide 65: pthread_mutex_trylock
	Slide 66
	Slide 67: Thread Safety
	Slide 68: Thread-Safety Classes
	Slide 69: Thread-Unsafe Functions Class 1
	Slide 70: Thread-Unsafe Functions Class 1 - Fix
	Slide 71: Thread-Unsafe Functions Class 2
	Slide 72: Thread-Unsafe Functions Class 2
	Slide 73: Thread-Unsafe Functions Class 2
	Slide 74: Thread-Unsafe Functions Class 2 - Fix
	Slide 75: Thread-Unsafe Functions Class 2 - Fix
	Slide 76: Thread-Unsafe Functions Class 3
	Slide 77: Thread-Unsafe Functions Class 3 - Fix
	Slide 78: Thread-Unsafe Functions Class 4
	Slide 79: Reentrant Functions - Recap
	Slide 80: Ethereum Reentrency Attack
	Slide 81: Poll: thread-safe functions?
	Slide 82: Example thread-safe functions
	Slide 83
	Slide 84: Implementing Mutual Exclusion
	Slide 85: Instruction-level Atomicity
	Slide 86: Behavior of xchg
	Slide 87: Building a Spin Lock with xchg
	Slide 88: Building a Multi-CPU Mutex (avoids extensive spinning)
	Slide 89: Building a Multi-CPU Mutex (avoids extensive spinning)
	Slide 90
	Slide 91: Semaphores
	Slide 92: C semaphore programming example
	Slide 93: Semaphore
	Slide 94: Using semaphores for mutual exclusion
	Slide 95: Using semaphores for mutual exclusion
	Slide 96: The Bounded Buffer Problem
	Slide 97: The Bounded Buffer Problem
	Slide 98: Example Bounded Buffer
	Slide 99
	Slide 100: When is a Semaphore Not Enough?
	Slide 101: Condition Variables
	Slide 102: Condition Variable Example
	Slide 103: Use a condition variable
	Slide 104: Use a condition variable
	Slide 105: Summary of Synchronization

