
File I/O

Unit 6

CS 3650 Computer Systems – Summer 2025

* Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, Ji-Yong Shin, and Alden Jackson’s lecture slides for the same course.

POSIX File I/O
Everything is a file, until it isn’t.

2

POSIX File System Basics

• We’ve been introduced to two types of virtualization:

• The process, which virtualizes the CPU

• The address space, which virtualizes memory
(more details on this later)

• Together, they allow a program to run as if it had its own private
processor and its own memory

• Persistent storage, i.e., disk drives, which keep data intact when
power is lost, is one more element in the virtualization model

• Two major abstractions: files and directories

3

Files and Directories

• File
• Linear array of bytes that can be written or read

• Name
• Low-level: inode number, an non-zero integer, used by the OS

• User-readable

• Directory
• File containing list of (low-level name, user-readable name) pairs

• Can contain other directories, as a directory is a file
• Root directory: /

• Current directory: .

• Parent directory: ..

4

Path

• Absolute path
• Starts from the root directory

• /home/ben/courses/cs3650/assignment.txt

• Relative path
• Starts from current directory location

• Assume current directory is /home/ben/
• ./courses/cs3650/assignment.txt

5

open / close

• Opening an existing or creating a new file is with the open() system call

• File descriptor, fd:
• An integer, private per process, used by OS to access files
• Use fd to read or write the file.
• stdin = 0, stdout = 1, stderr = 2
• Open returns lowest-numbered fd that is not currently open

6

// Create file “foo” and return a file descriptor
int fd = open("foo",

O_CREAT|O_WRONLY|O_TRUNC, // create write-only
S_IRUSR|S_IWUSR); // set permissions

Struct file in xv6

7

// system-wide open files maintained by
the OS
struct {

struct spinlock lock;
struct file file[NFILE];

} ftable;

struct proc {
…
struct file *ofile[NOFILE]; // open files

// NOFILE: max # open files
…

};

// in xv6, file descriptor is the index of ofile

struct file {
enum {

FD_NONE,
FD_PIPE,
FD_INODE}

type;
int ref;
char readable;
char writable;
struct inode *ip;
struct pipe *pipe;
uint off;

};

Struct file in xv6

8

File descriptors

Open file table

3

Process

struct file

…

struct file

…

…

0 (stdin)
1 (stdout)
2 (stderr)

4

…

File YYY

File XXX

Inodes of

struct file

Pseudo terminal
(keyboard and

monitor)

open / close

• To close the file:

// Close an open file descriptor

int close(int fd); // returns 0 on success

9

read / write

ssize_t read(int fd, void *buf, size_t count);

read() attempts to read up to count bytes from file descriptor fd
into the buffer starting at buf.

On success, the number of bytes read is returned (zero indicates end
of file), and the file position is advanced by this number.

10

read / write

ssize_t write(int fd, const void *buf, size_t count);

write() writes up to count bytes from the buffer starting at buf
to the file referred to by the file descriptor fd.

On success, the number of bytes written is returned. On error, -1 is
returned and errno is set to indicate the cause of the error.

11

lseek

• Setting offset of the file for data accesses

• off_t lseek(int fd, off_t offset, int whence)
• Fd: file descriptor

• Offset: resulting offset location

• Whence: tells us how to compute the location using the offset
• SEEK_SET: offset = given offset

• SEEK_CUR: offset = current offset + given offset

• SEEK_END: offset = end of file + given offset

12

Example: using strace

$ echo "hello cs3650" > foo
$ strace cat foo
…
openat(AT_FDCWD, "foo", O_RDONLY) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=13, ...}) = 0
fadvise64(3, 0, 0, POSIX_FADV_SEQUENTIAL) = 0
mmap(NULL, 1056768, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f8f66844000
read(3, "hello cs3650\n", 1048576) = 13
write(1, "hello cs3650\n", 13) = 13
read(3, "", 1048576) = 0
munmap(0x7f8f66844000, 1056768) = 0
close(3) = 0
close(1) = 0
close(2) = 0
…
$

13

stdin = 0, stdout = 1, stderr = 2

openat() returns file descriptor = 3

fstat() returns status information on 3,

in particular length of file (13 bytes)

read(13 bytes from 3)

write(13 bytes to 1)

read(0 bytes from 3)

close() all open fds

Open/Read/Write/lseek Demo

14

Process sharing an open file table entry

15

File descriptors

Refcnt:1
Off: 0

inode: …

Open file table

Refcnt:1
Off: 2

inode: …

3

Process

Inode #XYZ
(foo.txt)

0 (stdin)
1 (stdout)
2 (stderr)

4

Inodes of

… …

Process sharing an open file table entry

16

File descriptors

File descriptors

Refcnt:2
Off: 5

inode: …

Open file table

3

3

Parent process

Child process

Inode #XYZ
(foo.txt)

0 (stdin)
1 (stdout)
2 (stderr)

0 (stdin)
1 (stdout)
2 (stderr)

Inodes of

Closing from one process
doesn’t remove the ftable
entry because refcnt > 0

… …

Redirecting I/O

All running programs have 3 default I/O streams:

• Standard Input: stdin (0)

• Standard Output: stdout (1)

• Standard Error: stderr (2)

By default,

• stdin is the keyboard

• stdout and stderr are the terminal

But these can be redirected…

17

redirect a.out's stdin to read from file
infile.txt:

$./a.out < infile.txt

redirect a.out's stdout to print to file
outfile.txt:

$./a.out > outfile.txt

redirect a.out's stdout and stderr to a file
out.txt

$./a.out &> outfile.txt

redirect all three to different files:

(< redirects stdin, 1> stdout, and 2> stderr):

$./a.out < infile.txt 1> outfile.txt 2>

errorfile.txt

https://diveintosystems.org/singlepage/#_io_in_c

Implementing redirection

18

File descriptors

Open file table

3

Process

struct file

…

…

…

…

…

0 (stdin)
1 (stdout)
2 (stderr)

4

…

… outfile

infile

Inodes of

Pseudo terminal
(keyboard and

monitor)

Implementing redirection

19

File descriptors

Open file table

3

Process

struct file

…

struct file

…

…

0 (stdin)
1 (stdout)
2 (stderr)

4

struct file

outfile

infile

Inodes of

Pseudo terminal
(keyboard and

monitor)

Redirection demo

20

Pipes

• At its simplest, a pipe is a
unidirectional data channel

• Typical use is to connect the
‘output’ of a process to the ‘input’
of another process

• In the shell (see right) or in a
program

21

find the number of processes

option 1

$ ps axu > output.txt

$ wc -l output.txt

 120 output.txt

option 2 using a pipe ‘|’

$ ps axu | wc -l

 121

Creating pipes in C

int pipe(int pipefd[2]);

Creates a unidirectional data channel.

int pipefd[2]: contains the newly created file descriptors

• pipefd[0] is the 'read' end

• pipefd[1] is the 'write' end

Data written to the write end of the pipe is buffered by the kernel
until it is read from the read end of the pipe.

22

Basic pipe demo

23

basic_pipe.c illustration

24

File descriptors

3 (pipe_fd[0])

Parent process

0 (stdin)
1 (stdout)
2 (stderr)

Inodes of

Pseudo terminal
(keyboard and

monitor)

Open file table

struct file

…

struct file

…

struct file

…

4 (pipe_fd[1])

Pipe

Pipe
File descriptors

Child process

0 (stdin)
1 (stdout)
2 (stderr)

3 (pipe_fd[0])
4 (pipe_fd[1])

basic_pipe.c illustration

25

File descriptors

3

Parent process

0 (stdin)
1 (stdout)
2 (stderr)

Inodes of

Pseudo terminal
(keyboard and

monitor)

Open file table

struct file

…

struct file

…

struct file

…

4 (pipe_fd[1])

Pipe

Pipe
File descriptors

Child process

0 (stdin)
1 (stdout)
2 (stderr)

3 (pipe_fd[0])
4

basic_pipe.c illustration

26

File descriptors

3

Parent process

0 (stdin)
1 (stdout)
2 (stderr)

Inodes of

Pseudo terminal
(keyboard and

monitor)

struct file

struct file

…

4 (pipe_fd[1])

Pipe

Pipe
File descriptors

Child process

0 (stdin)
1 (stdout)
2 (stderr)

3 (pipe_fd[0])
4

struct file

…

…

Open file table

How can we relate pipe with stdin/stdout?

• We know how to create a channel/pipe between two processes

• How can we make what goes to stdout to be written to pipe[1]?

• How can we make what comes from stdin to be read from pipe[0]?

27

Dup

• int dup(int oldfd);
• Creates a copy of the file descriptor

• Assigns the copy to the lowest unassigned fd number

• int dup2(int oldfd, int newfd);
• Creates a copy of the oldfd file descriptor and assigns it to newfd

• If newfd is already open, it will silently close (need to watch out!)

28

Dup example

29

File descriptors

3 (pipe_fd[0])

Parent process

0 (stdin)
1 (stdout)
2 (stderr)

Inodes of

Pseudo terminal
(keyboard and

monitor)

struct file

struct file

…

4 (pipe_fd[1])

Pipe

Pipe

dup(pipe_fd[0]);

struct file

…

…

Open file table

Dup example

30

File descriptors

3 (pipe_fd[0])

Parent process

0 (stdin)
1 (stdout)
2 (stderr)

Inodes of

Pseudo terminal
(keyboard and

monitor)

struct file

struct file

…

4 (pipe_fd[1])

Pipe

Pipe

dup(pipe_fd[0]);

5 (copy of
pipe_fd[0])

struct file

…

…

Open file table

Dup2 example

31

File descriptors

3 (pipe_fd[0])

Parent process

1 (stdout)
2 (stderr)

Inodes of

Pseudo terminal
(keyboard and

monitor)

struct file

struct file

…

4 (pipe_fd[1])

Pipe

Pipe
dup2(pipe_fd[0], 0);

Same as:
 close(0);
 dup(pipe_fd[0]);

0 (stdin)
struct file

…

…

Open file table

Dup2 example

32

File descriptors

3 (pipe_fd[0])

Parent process

1 (stdout)
2 (stderr)

Inodes of

Pseudo terminal
(keyboard and

monitor)

struct file

struct file

…

4 (pipe_fd[1])

Pipe

Pipe
dup2(pipe_fd[0], 0);

Same as:
 close(0);
 dup(pipe_fd[0]);

0 (copy of
pipe_fd[0])

struct file

…

…

Open file table

Pipe.c demo

33

pipe.c illustration

34

File descriptors

3 (pipe_fd[0])

Parent process

0 (stdin)
1 (stdout)
2 (stderr)

Inodes of

Pseudo terminal
(keyboard and

monitor)

struct file

struct file

…

4 (pipe_fd[1])

Pipe

Pipe

struct file

…

…

Open file table

pipe.c illustration

35

File descriptors

3 (pipe_fd[0])

Parent process

0 (stdin)
1 (stdout)
2 (stderr)

Inodes of

Pseudo terminal
(keyboard and

monitor)

struct file

struct file

…

4 (pipe_fd[1])

Pipe

Pipe

File descriptors
Reading child

0 (stdin)
1 (stdout)
2 (stderr)

3 (pipe_fd[0])
4 (pipe_fd[1])

struct file

…

…

Open file table

pipe.c illustration

36

File descriptors

3 (pipe_fd[0])

Parent process

0 (stdin)
1 (stdout)
2 (stderr)

Inodes of

Pseudo terminal
(keyboard and

monitor)

struct file

struct file

…

4 (pipe_fd[1])

Pipe

Pipe

File descriptors
Reading child

0 (stdin)
1 (stdout)
2 (stderr)

3 (pipe_fd[0])
4

Reading child is now taking
pipe’s read end as stdin

struct file

…

…

Open file table

pipe.c illustration

37

File descriptors

3 (pipe_fd[0])

Parent process

0 (stdin)
1 (stdout)
2 (stderr)

Inodes of

Pseudo terminal
(keyboard and

monitor)

struct file

struct file

…

4 (pipe_fd[1])

Pipe

Pipe

File descriptors
Reading child

0 (stdin)
1 (stdout)
2 (stderr)

3 (pipe_fd[0])
4

File descriptors
Writing child

0 (stdin)
1 (stdout)
2 (stderr)

3 (pipe_fd[0])
4 (pipe_fd[1])

struct file

…

…

Open file table

pipe.c illustration

38

File descriptors

3 (pipe_fd[0])

Parent process

0 (stdin)
1 (stdout)
2 (stderr)

Inodes of

Pseudo terminal
(keyboard and

monitor)

struct file

struct file

…

4 (pipe_fd[1])

Pipe

Pipe

File descriptors
Reading child

0 (stdin)
1 (stdout)
2 (stderr)

3 (pipe_fd[0])
4

File descriptors
Writing child

0 (stdin)
1 (stdout)
2 (stderr)

3
4 (pipe_fd[1]) Writing child is now using

pipe’s write end as stdout

struct file

…

…

Open file table

pipe.c illustration

39

File descriptors

3

Parent process

0 (stdin)
1 (stdout)
2 (stderr)

Inodes of

Pseudo terminal
(keyboard and

monitor)

struct file

struct file

…

4

Pipe

Pipe

File descriptors
Reading child

0 (stdin)
1 (stdout)
2 (stderr)

3 (pipe_fd[0])
4

File descriptors
Writing child

0 (stdin)
1 (stdout)
2 (stderr)

3
4 (pipe_fd[1])

struct file

…

…

Open file table

Fsync

• File system buffers writes in memory for performance
• If power goes out writes can be lost

• Fsync() tells the file system to write data to the disk/ssd.

int fd = open("foo", O_CREAT|O_WRONLY|O_TRUNC,
 S_IRUSR|S_IWUSR);

assert(fd > -1);

int rc = write(fd, buffer, size);

assert(rc == size);

rc = fsync(fd);

assert(rc == 0);

40

Stat

• Stat returns file information

prompt> echo hello > file

prompt> stat file
File: ‘file’
Size: 6 Blocks: 8 IO Block: 4096 regular file
Device: 811h/2065d Inode: 67158084 Links: 1
Access: (0640/-rw-r-----) Uid: (30686/remzi)

Gid: (30686/remzi)
Access: 2011-05-03 15:50:20.157594748 -0500
Modify: 2011-05-03 15:50:20.157594748 -0500
Change: 2011-05-03 15:50:20.157594748 -0500

41

Rename

• Renaming a file
• mv moves or renames a file

• mv foo bar

• Rename function can rename the file

int fd = open("foo.txt.tmp",
O_WRONLY|O_CREAT|O_TRUNC,
S_IRUSR|S_IWUSR);

write(fd, buffer, size); // write out new version of file
fsync(fd);
close(fd);
rename("foo.txt.tmp", "foo.txt");

42

Link

• Hard link
• Creating another human readable name of the file
• Removing/unlinking one does not remove the actual file

prompt> echo hello > file
prompt> cat file hello
prompt> ln file file2
prompt> cat file2
hello

prompt> ls -i file file2
67158084 file
67158084 file2

prompt> rm file
removed ‘file’
prompt> cat file2
hello

43

Link

• Symbolic link
• This is like a pointer to a file
• Deleting/renaming the source file will create a dangling reference

prompt> echo hello > file
prompt> ln -s file file2
prompt> cat file2
hello

prompt> ls -al
drwxr-x--- 2 remzi remzi 29 May 3 19:10 ./
drwxr-x--- 27 remzi remzi 4096 May 3 15:14 ../
-rw-r----- 1 remzi remzi 6 May 3 19:10 file
lrwxrwxrwx 1 remzi remzi 4 May 3 19:10 file2 -> file

prompt> rm file
prompt> cat file2
cat: file2: No such file or directory

44

Unlink

• Unlink removes/deletes a file

prompt> strace rm foo
...
unlink("foo") = 0
...

45

