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Diving into the Operating Systems

• So far, we have been preparing for our further exploration: 
• Assembly 

• C

• Today we will dive into the OS itself. What we learned will be useful
• Registers and instruction concepts

• Memory as a linear array and ways to work with memory addresses

• C is at the core of many common OSes
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OS: Virtualization + Abstraction

• The OS is a land of magic and illusions

• OS makes a computer “easy” to use

• OS hides overwhelming complexities of hardware behind an API
• This is abstraction

• OS creates the illusion of an ideal, general, and powerful machine 
• This is virtualization

• We will start by looking at how the processor virtualizes the CPU

• And then process and other abstractions the OS uses
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Recommended Reading

• The OSTEP book: up to Ch. 3-6

• Online: https://pages.cs.wisc.edu/~remzi/OSTEP/ 

• Hard copy: Lulu or Amazon
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Running Dynamic Code

• Basic function of an OS is to execute and manage code dynamically:

for example,
• A command issued at a command line terminal

• An icon double clicked from the desktop

• Jobs/tasks run as part of a batch system

• A process is the basic unit of a program in execution
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Programs and Processes
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How to Run a Program?

• How does the OS turn the a double-clicked .exe file into a process?

• What information must the .exe file contain to run as a program?
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Program Formats

• Programs obey specific file formats
• CP/M (control program monitor) and DOS (disk operating system): 

COM executables (*.com)

• DOS: MZ executables (*.exe)
• Named after Mark Zbikowski, a DOS developer

• Windows: Windows Portable Executable (PE, PE32+) (*.exe)
• Modified version of Unix COFF executable format
• PE files start with an MZ header.

• Unix/Linux: Executable and Linkable Format (ELF)

• Mac OSX: Mach object file format (Mach-O)
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ELF File Format

• Spec: https://refspecs.linuxfoundation.org/elf/elf.pdf 

• ELF Header
• Contains compatibility info
• Entry point of the executable code

• Program header table
• Lists all the segments in the file
• Used to load and execute the program
• How to layout memory

• Section header table
• Used by the linker
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ELF Header Example
$ gcc –g –o test test.c
$ readelf --header test
ELF Header:
 Magic:   7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
  Class:                             ELF64
  Data:                              2's complement, little endian
  Version:                           1 (current)
  OS/ABI:                            UNIX - System V
  ABI Version:                       0
  Type:                              EXEC (Executable file)
  Machine:                           Advanced Micro Devices X86-64
  Version:                           0x1
  Entry point address:               0x400460
  Start of program headers:          64 (bytes into file)
  Start of section headers:          5216 (bytes into file)
  Flags:                             0x0
  Size of this header:               64 (bytes)
  Size of program headers:           56 (bytes)
  Number of program headers:         9
  Size of section headers:           64 (bytes)
  Number of section headers:         36
  Section header string table index: 33
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The Program Loader

• OS functionality that loads programs into memory, creates 
processes

• Places segments into memory

• Loads necessary dynamic libraries

• Performs relocation

• Allocated the initial stack frame

• Sets EIP to the programs entry point

• Process is a live program execution 
context or basic unit of execution
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Warmup

• How many processes do you have open at any given time?
• 10s, 100s? More!? :)
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First: Instruction Execution

• Code in an executable is a sequence of instructions

• CPU runs an instruction at a time

• This is done in a fetch-decode-execute cycle

• If you have 4 cores, your processor can do
4 FDE cycles at a time

• But how do we see ~100s of programs 
running on 4 cores?  

• What about a single core CPU?

MAR: holds address of current instruction, MDR: holds contents of address in MAR
CIR: stores current instruction, so not overwritten by additional fetches to MAR/MDR
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From the warm up

• Many programs are running, but only 8 CPUs that do the work
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The Problem: So how does our 
Operating System provide the illusion of 
100s of processes running at once? 



Virtualization with time sharing

• The Operating System (OS) runs one process at a time, 
• That executes one instruction a time

• After some amount of time the process stops or finishes

• Then the OS starts another process

• Eventually the same process will run again and continue where it left off

• Repeat

• This concept is known as time sharing

• Are the two states, Running and Ready, enough?
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Process States

• What if the process needs to read/write to disk or perform a 
network request? Any problems?

• These operations take (comparatively) long to complete

• Keeping process state to Running?
• Hogs the CPU just waiting for disk/network access to complete

• Keeping process state to Ready?
• Might not be ready to run when its turn comes 

• Asking it to run may be waste of time

• Solution?
• Introduce a 3rd state, Blocked 

• Meaning: the process requested some I/O operation
and cannot run until that operation is completed
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Process States

• Each process can be in one of several states

• The OS schedules the state the process is in

• Typically, these are:
• Running: the process is executing on the CPU

• Ready: the process is ready to execute, 
but the OS did not choose to run it

• Blocked - the process issued some blocking operation
• I/O is a common blocking operation
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Then how does OS switch processes?
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OS Challenges to Virtualization

• Performance
• How to implement virtualization without excessive overhead

• Control
• How to run multiple processes without losing control over the CPU?

• Without OS control, a process 
• could occupy the CPU and run forever

• access memory it does not have access impacting safety and security
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Switching between processes

• Switching between processes is a challenge, because 

If the CPU is running a program, then the OS is not running

• If OS is not running, then how can it switch out/in processes?
• Think about how you would design the OS!
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When Do You Switch Processes?

• To share CPU between multiple processes, control must 
eventually return to the OS

• When should this happen?

• What mechanisms implements the switch from user process 
back to the OS?

• Four approaches:
1. Voluntary yielding

2. Switch during API calls to the OS

3. Switch on I/O

4. Switch based on a timer interrupt
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Voluntary Yielding

• Idea: processes must voluntary give up control by calling an OS API, 
e.g. thread_yield()

• Problems?
• Misbehaving or buggy apps may never yield

e.g., while (1) { //do something without yielding }

• No guarantee that apps will yield in a reasonable amount of time

• Waste of CPU resources, i.e. what if a process is idle-waiting on I/O?
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Interjection on OS APIs

• Idea: whenever a process calls an OS API, this gives the OS an 
opportunity to context switch

• E.g. printf(), fopen(), socket(), etc…

• The original Apple Macintosh used this approach
• Cooperative multi-tasking

• Problems?
• Misbehaving or buggy apps may never yield

• Some normal apps don’t use OS APIs for long periods of time
• E.g. a long, CPU intensive matrix calculation
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Switching on I/O

• Idea: when one process is waiting on I/O, switch to another process
• I/O APIs already go through the OS, so context switching is easy

• Problems?
• Some apps don’t have any I/O for long periods of time
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Preemptive Switching

• So far, processes will not switch to another until an action is taken
• e.g. an API call or an I/O interrupt

• Idea: use a timer to force context switching at set intervals
• Timer is running at a fixed frequency to measure how long a process 

has been running

• If it’s been running for some max duration (scheduling quantum), the 
handler switches to the next process

• Problems? Who will trigger the timer 
• Requires hardware support (a programmable timer)

• Thankfully, this is built-in to most modern CPUs
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Mechanisms for switching:

Exceptional Control Flow
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Remember

• Computers only really do one thing, they execute one instruction 
one after another

• This is based on the execution in your program.
• Your programs follow some control flow based on jumps and 

branches (and calls and returns)
• This is based on your programs state.

• However, sometimes we want to react based on the system state
• E.g., you hit Ctrl+C on the keyboard in your terminal and execution 

stops.
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Exceptional Control Flow Mechanisms

• Low level mechanism
• Exceptions

• Change in control flow in response to a system event.

• This is implemented in hardware and OS software
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Exceptional Control Flow Mechanisms

• High level mechanisms
• Process context switch

• e.g. It appears that multiple programs are running at once on your OS, 
but remember only one instruction at a time.

• Context switches provide this illusion

• Signals
• Implemented by OS software and CPU hardware
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Exceptions

• An exception is a transfer of control to the OS kernel
• The kernel is the memory-resident part of the OS

• Meaning OS lives in memory forever: we do not modify this!

• Examples of exceptions we may be familiar with:
• Divide by 0, arithmetic overflow, or typing Ctrl+C

• How does the OS know how to handle the exception?

31



Exception Tables

• Somewhere in the OS, a table exists with different exceptions.
• Think of it like a giant switch or many if else-if statements.

• This is part of a kernel that you cannot modify.
• This code is in a “protected region” of memory

• For each exception, there is one way to handle it
• (We call these “exception handlers”)
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Our favorite: Invalid Memory Reference

• That is, the segmentation fault
• OS sends signal SIGSEGV to our user process

• This time the program gets terminated.
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Exceptional Control Flow Taxonomy
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Asynchronous Exceptions (Interrupts)

• Caused by events external to processor
• I.e., not from the result of an instruction the user wrote

• E.g.
• Timer interrupts scheduled to happen every few milliseconds

• A kernel can use this to take back control from a program/user

• Some network data arrives (I/O)

• A nice example is while reading from disk
• The processor can start reading, then hop over and perform some other 

tasks until memory is actually fetched.
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Synchronous Exceptions

• Events caused by executing an instruction
• Traps

• Intentionally done by the user
• e.g. system calls, breakpoints (like in gdb)

• Returns control to the next instruction
• Faults

• Unintentional, but possibly recoverable
• e.g. page faults (we’ll learn more about soon), floating point exceptions

• Handled by re-executing current instruction or aborting execution
• Aborts

• Unintentional and unrecoverable
• e.g. illegal instruction executed, parity error
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Exceptional Control Flow Taxonomy
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Okay, so Interrupts, Traps, 
Faults, and Aborts are our 
tools to change control 
flow within a process
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Programs and Processes
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ELF File Format

• Spec: https://refspecs.linuxfoundation.org/elf/elf.pdf 

• ELF Header
• Contains compatibility info
• Entry point of the executable code

• Program header table
• Lists all the segments in the file
• Used to load and execute the program
• How to layout memory

• Section header table
• Used by the linker
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The Program Loader

• OS functionality that loads programs into memory, creates 
processes

• Places segments into memory

• Loads necessary dynamic libraries

• Performs relocation

• Allocated the initial stack frame

• Sets EIP to the programs entry point

• Process is a live program execution 
context or basic unit of execution
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Process States

• Each process can be in one of several states

• The OS schedules the state the process is in

• Typically, these are:
• Running: the process is executing on the CPU

• Ready: the process is ready to execute, 
but the OS did not choose to run it

• Blocked - the process issued some blocking operation
• I/O is a common blocking operation
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When Do You Switch Processes?

• To share CPU between multiple processes, control must 
eventually return to the OS

• When should this happen?

• What mechanisms implements the switch from user process 
back to the OS?

• Four approaches:
1. Voluntary yielding

2. Switch during API calls to the OS

3. Switch on I/O

4. Switch based on a timer interrupt
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Exceptional Control Flow Taxonomy
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System calls
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Different privilege levels

• Most modern CPUs support protected mode

• x86 CPUs support three rings with different privileges
• Ring 0: OS kernel

• Ring 1, 2: device drivers

• Ring 3: userland

• Most OSes only use rings 0 and 3

Ring 0
Kernel

Ring 1

Ring 2

Ring 3

Device Drivers

Device Drivers

Applications
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Dual-Mode Operation

• Ring 0: kernel/supervisor mode
• Execution with the full privileges of the hardware

• Read/write to any memory, access any I/O device, read/write any disk 
sector, send/read any packet

• Ring 3: user mode or “userland”
• Limited privileges

• Only those granted by the operating system kernel
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Protected Features

• What system features are impacted by protection?
• Privileged instructions

• Only available to the kernel

• Limits on memory accesses
• Prevents user code from overwriting the kernel

• Access to hardware
• Only the kernel may directly interact with peripherals

• Programmable Timer Interrupt
• May only be set by the kernel

• Used to force context switches between processes
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System Calls

• Syscall is the lowest level of interaction with an operating system 
from a C programmer

• A user program can ask the OS for services that the OS manages 
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Changing Modes

• Applications often need to access the OS
• i.e. system calls

• Writing files, displaying on the screen, receiving data from the 
network, etc…

• But the OS is ring 0, and apps are ring 3

• How do apps get access to the OS?
• Apps invoke system calls with an interrupt

• E.g. int 0x80

•  int causes a mode transfer from ring 3 to ring 0
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System Call Example
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IVT

Physical 
Main Memory

0x80 Handler

User Program

1. Software executes int 0x80
• Pushes EIP, CS, and EFLAGS

2. CPU transfers execution to the OS handler
• Look up the handler in the Interrupt Vector Table (IVT)

• Switch from ring 3 to 0

3. OS executes the system call
• Save the processes state

• Use EAX to locate the system call

• Execute the system call

• Restore the processes state

• Put the return value in EAX

4. Return to the process with iret
• Pops EIP, CS, and EFLAGS

• Switches from ring 0 to 3

Syscall Table

printf()

OS Code

EIP

Note: this shows a physical memory 
layout. The user program thinks it owns 
the entire memory space (the diagram 

that we saw in previous lectures). 



System Calls and arguments

• Helpful webpage with syscalls and arguments
• https://filippo.io/linux-syscall-table/
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Opening a File

• rax holds the system call # that we want to pass.
• Other arguments accessed as follows
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Opening a File | Illustration
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Processes
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The Process

• A process is alive, a program is dead.  Long live the process!
• (A program is just the code.)

• Processes are organized by the OS using two key 
abstractions

• Logical Control Flow
• Programs “appear” to have exclusive control over the CPU

• Done by “context switching”

• Private Address Space
• Each program “appears” to have exclusive use of main memory

• Provided by mechanism called virtual memory
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Multiprocessing: Illusion

• When running processes, it appears that we are running many 
different tasks at the same time

• It also appears that our memory is neatly organized.
• Note from this diagram we see every process has its own

• stack

• heap

• data

• code

• registers
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Multiprocessing: Reality

• Remember, at any time, only one processor is really running code

• Program execution is interleaved

• OS manages memory addresses in virtual memory

• OS stores the saved registers for different programs. 
• (At some point in this class, you probably figured 16 registers is not 

enough for all of the processes that you were running.)

• When we switch which process is executing: this is a context switch
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Context switch: a high-level view 

• Save register values to memory

• Move on to the next process 
• Point to the stack of the next process

• Restore saved register values

• Start running executing the next process
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Top Frame

Return addr

Saved EAX

…

Saved EDX

Process 1’s Stack

Top Frame

Return addr

Saved EAX

…

Saved EDX

Process 2’s Stack

<switch>:

push   eax

push   ebx

…
push   edx

mov    esp, [cur_esp]

mov    [saved_esp], esp

pop     edx

…
pop     ebx

pop     eax

ret

Saved ESP for Process 1

Saved ESP for Process 2

OS Memory

a = b + 1;

switch();

b--;

Process 1’s Code

puts(my_str);

switch();

my_str[0] = ‘\n’;

i = strlen(my_str);

switch();

Process 2’s Code

ESP
EIP

OS Code

An example of a context switch: 
there can be different implementations

ESP

ESP



Storing Register Context | Data Structures

• In order to store the state of 
the registers, your OS will keep 
track of this information

• Typically there is a process list, 
and the list contains 
information like the registers.

• To the right is a struct for the 
xv6 operating system storing 
32-bit registers.  We will use 
xv6 later in the semester.
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Storing Process Information | Data Structures

• Additional information such as 
the process state is stored by 
the OS.

• proc is the data structure which 
stores information about each 
process (linux uses task_struct)

• To the right is the struct 
proc for the xv6 operating 
system
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Process state

Registers that we saw 
earlier

Process id



man proc
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top

• top is a program that will show linux processes that are running
• Top shows all of the processes running on a system
• Intuitively, it must be possible for a machine to host multiple 

processes, we do so when we ssh.
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htop

• htop is another program to show running processes
• It shows cores and their load
• It also shows the process tree (process / subprocess relationships)
• It can be scrolled left/right and up/down 
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Viewing processes (Like we did with top or system monitor)

• proc itself is like a filesystem
• (We’ll talk more about everything in Unix being viewed as a file).

• We can navigate to it with cd /proc then list all of the processes.
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man ps | Run ps -ef

• Another way to view actively running processes is ps
• -ef means view all of the processes
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Gathering more information from proc

• We can run cat stat to output status information from proc

• Try some of the examples below in your VM: 
https://www.networkworld.com/article/2693548/unix-viewing-you
r-processes-through-the-eyes-of-proc.html

• Demo
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Concurrent Processing

• Each process running has its own control flow

• If they overlap in their lifetime, then they are running concurrently
• otherwise they are sequential

• Remember only 1 process at a time can execute
• On a single core, which processes here are concurrent to each other?

• Concurrent: 
• Which are sequential?

• Sequential:
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Concurrent Processing

• Each process running has its own control flow

• If they overlap in their lifetime, then they are running concurrently
• otherwise they are sequential

• Remember only 1 process at a time can execute
• On a single core, which processes here are concurrent to each other?

• Concurrent: A&B
• Which are sequential?

• Sequential:
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Concurrent Processing

• Each process running has its own control flow

• If they overlap in their lifetime, then they are running concurrently
• otherwise they are sequential

• Remember only 1 process at a time can execute
• On a single core, which processes here are concurrent to each other?

• Concurrent: A&B, A&C
• Which are sequential?

• Sequential:
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Concurrent Processing

• Each process running has its own control flow

• If they overlap in their lifetime, then they are running concurrently
• otherwise they are sequential

• Remember only 1 process at a time can execute
• On a single core, which processes here are concurrent to each other?

• Concurrent: A&B, A&C
• Which are sequential?

• Sequential: B &C
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Context Switching Illustration

• Processes are managed by a shared chunk of memory-resident OS 
code called the kernel

• The kernel is not a separate process itself, but runs as part of other 
existing processes

• Context Switches pass the control flow from one process to another
• Note how going from A to B (and B to A) requires some kernel code to 

be executed
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Process Control
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Creating a Process

• When we want to create a new process, we can do so from our 
parent process using the fork() command.

• This creates a new child process that runs.
• Conceptually, this new child is a clone of itself

• int fork(void)
• Returns 0 to the child process, 

Returns child’s PID to the parent process
• PID = process ID

• Child is almost identical to parent

• Child gets a copy (that is separate) to the parent’s virtual address space

• Child gets a copy of open file descriptors

• Child has a different PID than parent.

• Note: Fork actually returns twice (once to the parent, and once to the 
child), even though it is called once.
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man fork
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Conceptual View of fork() | The before and after
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UNIX Process Management

pid = fork();
if (pid == 0)
        exec(…);
else
        …

pid = fork();
if (pid == 0)
        exec(…);
else
        …

pid = fork();
if (pid == 0)
        exec(…);
else
        …

main() {
         …
}

pid = 0

pid = 9418

Original Process

Child Process
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from the parent. 

Differences:
Register values including 
PC, address space, etc. 
and return value from 
fork()



Question: What does this code print?

int child_pid = fork();

if (child_pid == 0) {           // I'm the child process

    printf("I am process #%d\n", getpid());

    return 0;

} else {                        // I'm the parent process

    printf("I am parent of process #%d\n", child_pid);

    return 0;

}
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Fork demo
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Additional Process commands

• int exec(const char *pathname, char *argv[], …)
• System call to change the program being run by the current process

• wait() – system call to wait for a process to finish

•  signal() – system call to send a notification to another process

• pid_t getpid(void)
• Return PID of the current process

• pid_t getppid(void)
• Returns PID of parent process

• Note that when we create a process with fork
• The parent child relationship, makes a tree.

• (Note pid_t is a signed integer)
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Process State

• When our process is running, it may be in one of the states below
• Running
• Ready
• Blocked

• What if it’s stopped permanently?
• Terminated
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Process Termination

• Process may be terminated for 3 reasons
• Receives a signal to terminate

• Returns from main routine 
(what we have normally been doing in the class)

• Calling the exit function
• Terminates with a given status

• Returning 0 means no error

• When exit is called, this only happens once, and it does not return
• Note that if we have an error in our system, sometimes we do not want to 

exit right away (e.g. safety critical system)
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Process Termination

• Typically, a process will wait(pid) until its child process(es) complete
• You will learn about zombie and orphaned processes in the lab

• abort(pid) can be used to immediately end a child process
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