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Introduction

• Goal: learn C programming language
• Many languages look like C

• C++, C#, Objective-C, Java, JavaScript, Go, Rust, Swift, etc.

• Many constructs look the same and have similar semantics

• C is a front-end for assembly

• Keeping that in mind, the lecture is not a full-fledged introduction 

• Use tutorials on the web or books to teach yourself C

• We want to make sure that we discuss the important bits of C

• Do ask questions, if any

2



C Background

• Programming language developed by Dennis Ritchie in 1972

• A successor language of Bell lab’s programming language “B”

• C was intended to make programming Unix easier

• Early Unix versions in Assembly

• High-level, compared to assembly

• But still low-level conceptual model

• Types - kind of “strong” but not really

• You manage memory

• You can even inline assembly
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C hello world

• Compilation: gcc hello.c -o hello
• #include <stdio.h> 

• imports the library for printf

• Getting command line arguments
• int argc: number of arguments (> 1)
• char * argv[]: array of strings
• ./hello argument test 1

• argc= 4, 
• argv[0] = “./hello” (always the path to binary file name)
• argv[1] = “argument”
• argv[2] = “test”
• argv[3] = “1”

• printf
• “Print”s according to the format string
• “\n” adds new line at the end of the string

#include <stdio.h>

int main(int argc, char *argv[])
{
     printf(“hello world!\n”);
     return 1;
}

// prints 
// hello world
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Other familiar features

• Blocks of scope are delimited by { and }
• Variables are declared at the top of the block before calling other 

statements
• Variable declared in the block is only visible in that block and any 

sub-blocks
• Once the block ends, variable is not visible anymore
• Blocks can be nested

•  ;  is used at the end of a statements

• Functions are declared pretty much like Java methods:
• return_type function_name(type1 arg1, type2 arg2, ...)

• E.g.,: int max(int first, int second)
• Functions that don’t return anything have a return type void

• E.g.,: void print_many_ints(int first, int second, int 
third)
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Data types

• Basic types
• short: 16 bit integer  

• int: 32 bit integer 

• long int: 64 bit integer

• char: 8 bit character (‘a’, ‘b’, ‘c’, ‘.’, ‘#’)

• float: 32 bit floating point numbers

• double: 64 bit floating point numbers (3.14, -123.456)

• No Boolean types: integer with 0 or 1 is used instead

• When in doubt about the size you can print sizeof(type)
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Control flows: if

if (condition) {
 // do stuff

} 

if (condition) { 
// do stuff 

} else { 
// do other stuff 

}
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Control flows: while

while (condition) { 

// do this while condition holds 

}

do { 

// do this at least once and then 
// keep doing it again while condition holds 

} while (condition); // don’t forget the semicolon
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Control flows: for

1. run the initializer expression 

2. if condition holds go to 3, else go to 6 

3. do stuff in body 

4. run the updater expression 

5. Go to 2 

6. End 

for (initializer; condition; updater) { 

}
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Operators

• Comparison operators: <, >, <=, >=, ==, !=
• while (a <= b)
• while (a != b)
• for (i = 0; i < 10; i++)

• Logical operators:  !, &&, ||
• if(x > 0 && x <10) 
• while(x > 0 || y > 0) 
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Continue and break

• You can skip the rest of the current iteration of the innermost loop with continue

• You can break out of the innermost loop with break

while (x > 0) {

if (x > 100) {

break;

}

if (x > 10) {

// do something 1

continue;

}

// do something 2

}

   // do something 3
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Control flows: switch

• Condition checks based on matching an expression (usually just a variable)

switch(expression) {
 case constant-expression:

// do something
break;   // optional: if you don’t break the next

      // block will be executed unconditionally
   case constant-expression:

// do something
break; 

…  
default: 

// do something
}
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Pointers

• DataType * pointer
• int *int_pointer;

• double *element = NULL;  // good practice to make initialize to NULL

• A pointer stores a memory address of a data instance
int main() {

int a = 10;
int * int_pointer; // currently points to an 

arbitrary location
int_pointer = &a; // & returns the address of the 

variable

printf(“%p\n”, int_pointer);

// *pointer accesses the value stored in the 
memory address

printf(“%d\n”, *int_pointer); 

*int_pointer = 20;

printf(“%p\n”, int_pointer);
printf(“%d\n”, *int_pointer);
printf(“%d\n”, a);

return 1;
}

Sample Output:
0x0016
10
0x0016
20
20

a

int_pointer

Addr 0x0016

Addr 0x1234 ?0x0016

?10
20
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Pointer of pointer

int i = 42; 

int *pi = &i; 

int **ppi = &pi; 

printf("%d %d %d\n", i, *pi, **ppi);

What should be printed?

42 42 42

ppi = pointer to (address of) pi

*ppi = pointer to (address of) i

**ppi = value of i
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Reason why pointers are considered difficult

• Some program languages do not expose memory addresses

• Accessing an arbitrary address through pointers causes runtime 
errors
• When you pass around pointer variables you will often see this

• Memory address is not a value that you directly use in a program
• But it is often more convenient to have access to

• Little control over memory addresses (program assigns for you)
• You will only directly assign NULL or copy existing addresses

• But sometimes you will access RELATIVE addresses
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Arrays

• Arrays are just pointers with some fancy syntax

• There are static (size known at compile-time) and dynamic array

• We will first discuss static arrays

float nums[4]; // create an array of 4 floats

• These will be stored contiguously in memory

• nums points to the first element

16



Arrays

• We can access them individually using indices, starting from 0

float nums[4]; // create an array of 4 
floats nums[0] = 0.1; 
nums[1] = 3.14; 
nums[2] = 1.5; 
nums[3] = 3214; 
printf("2nd element: %f\n", nums[1]);

• Arrays can also be initialized:

float nums[4] = { 0.1, 3.14, 1.5, 3214 }; 
printf("2nd element: %f\n", nums[1]);
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Arrays

• Pointer-based access

float nums[4] = { 0.1, 3.14, 1.5, 3214 }; 
printf("2nd element: %f\n", nums[1]);

 printf("1st element: %f\n", *nums);

 printf("2nd element: %f\n", *(nums+1));

 printf("3rd element: %f\n", *(nums+2));

 printf("4th element: %f\n", *(nums+3));
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String

• In C (like in Assembly for us), strings are just arrays of characters, 
terminated by a 0 byte (also written '\0')

• Relevant functions are in <string.h> 

• A string literal "Hello, world!" is just the corresponding array of 
characters with an extra char for \0

// msg1 and msg2 define exactly the same object in memory
char msg1[6] = "Hello"; 
char msg2[6] = { 'H', 'e', 'l', 'l', 'o', '\0' };
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Structs

• Structs are the most useful user-defined data types in C

• Think of them as Java classes, but everything is public 

• Structs do not have methods

• A struct stores multiple values of different types together

• It is defined using the struct keyword:

struct address { 
unsigned int house_no; 
char street[32];
char city[24]; 
char state[3]; 
unsigned int zip; 

} ; // don’t forget the semicolon.

struct address home, work; // this will allocate two 
               // structs on the stack
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Structs

• To access a field, we use “.”
work.house_no = 360; 
strcpy(work.street, "Huntington Ave"); // see man 3 

strcpy
strcpy(work.city, "Boston"); 
strcpy(work.state, "MA"); 
work.zip = 02115;

• Structs can, of course, be nested:
struct person { 

char first[32]; 
char last[32]; 
struct address home; 

};

• They can be passed to and returned from a function:
struct address get_address(struct person p) { ... }
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Structs

• Is this allowed?

struct person { 
char first[32]; 
char last[32]; 
struct person p; 

};
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Structs

• Is this allowed?

struct person { 
char first[32]; 
char last[32]; 
struct person p; 

};

No. Infinite recursion.
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Structs

• Is this allowed?

struct person { 
char first[32]; 
char last[32]; 
struct person *p; 

};
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Structs

• Is this allowed?

struct person { 
char first[32]; 
char last[32]; 
struct person *p; 

};

Yes! This is how a linked list works.
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Typedef

• Writing out struct every time can be tiring
struct address my_home;
struct person myself;
struct address get_home_addr(struct person arg);

• C allows us to introduce type synonyms using typedef:

typedef struct person person_t; // now we can use person_t
                   // to mean struct person

• typedef can be used with any type to make code more readable:

typedef unsigned char age_t;
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Dynamic memory allocations

• Memory can be allocated using the library function malloc
• It is defined in stdlib.h

• Takes the number of bytes we want 

• Returns a pointer to the block of memory (if successful)

• Allocated memory needs to be freed using free

int *one_int = malloc(4); 
*one_int = 42; 
free(one_int);
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Dynamic memory allocations

• We will mostly use malloc to allocate arrays and structs (below)

int *fifty_ints = malloc(50 * sizeof(int)); 

for (int i = 0; i < 50; ++i) { 
fifty_ints[i] = i * i; 

} 

free(fifty_ints);
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Pointers and memory management

• Stack vs heap
• Stack memory is automatically managed 

(maintains variables in the scope)

int addsquare(int first, int second) {
int temp = first + second;
return (temp * temp);

}

int main() {
int a = 1;
int b = 2;
int c = addsquare(a, b);
printf(”%d\n”, c);
return 1;

}

a
b
c

first
second
temp

Stack 
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Pointers and memory management

• Stack vs heap
• Heap memory is dynamically allocated and you should manage it

• “malloc” allocates memory

• “free” deallocates memory

void add_elements(struct list *list) {
  int I;
  for (I = 0; I < 3; I ++) {
    struct list_elem *elem = malloc(sizeof(struct list_elem));
    list_push_back(list, elem);
  }
}

int main() {
  struct list my_list;
  list_init(&my_list);
  add_elements(&my_list);
  while (list_size(&my_list) > 0) {
    struct_list_elem *elem = list_pop_front(&my_list);
    free(elem);
  }
  return 1;
}

mylist
(ptr) list

I
(ptr) elem

list_elem
list_elem
list_elem

If you forget to delete, memory 
space will be wasted and in the 
long run, you can run out of 
memory space (memory leak)

Stack Heap 
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Pointers to structs

• Of course, we can have pointers to structs:
struct person *p; // OR person_t *p;

• We can use the address-of operator & to get the address of a struct:
struct address *current = &work;

• We can also allocate memory for structs dynamically, 
using malloc and sizeof:
struct person *alice = malloc(sizeof(struct person));
person_t *alice = malloc(sizeof(person_t));

• We can also create arrays of structs:
person_t class[80]; 
person_t *friends = malloc(5 * sizeof(person_t)); 
// ... 
for (int i = 0; i < 5; ++i) {

if (strcmp(friends[i].home.street, "Huntington Ave") == 0) { 
printf("%s lives close!\n", friends[i].first); 

} 

}
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Pointers to structs

• Often, pointers are used to pass a struct to a function
• This avoids copying the contents into the function’s stack frame

• When accessing fields via a pointer, we use -> 

int lives_in_boston(person_t *p) { 

return strcmp(p->home.city, "Boston") != 0; 

// equivalent to 

// return strcmp((*p).home.city, "Boston") != 0; 

}

32



C Demo
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Preprocessor

• The C preprocessor (CPP) is a separate phase run at the very 
beginning of the compilation process

34



Preprocessor

• Just text processing engine

• Modifies the source text based on preprocessor directives

• The main job of CPP is to:
• Include the requested header files

• Define “global constants” – IMPORTANT: these are just textual 
macros, that is, pieces of C code that will get spliced wherever the 
constant name is mentioned

• Choose which parts of code to include for compilation based on 
various conditions
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Preprocessor: #define

• This directive is used to define a textual macro

• The macro can be a constant macro or a parametrized macro
• E.g.,

#define COUNT 100 
#define COURSE "Computer Systems"

• This will define the macros COUNT and COURSE; 

• Everywhere else where COUNT is mentioned, it will be replaced 
with 100, and COURSE will be replaced with "Computer Systems"

36



Preprocessor: #define

• Note, that the expression is simply substituted for the macro 

• It does not get evaluated at the definition site

• Hence there is a subtlety that one has to keep in mind:
Consider,

#define X 10 + 2 

int a = X;               // expands to 10 + 2 
int b = 3 * X; // expands to 2 * 10 + 2 

                                 //this might not be what we expect

• The solution is to always put an expression in parentheses:

#define X (10 + 2) 
int b = 3 * X; // expands to 2 * (10 + 2)
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Preprocessor: #define

• Parametric (“function-like”) Macros
• We can also define macros with arguments using #define
• These look like function calls, but they get expanded at compile-time
• Example,

#define max(a, b) (a > b ? a : b) 
printf("%d\n", max(3, 4));

• The argument to a macro does not get evaluated before being used in 
the macro, so we have a similar problem as above:
#define dbl(x) (2 * x) 
printf("%d\n", dbl(10 + 1)); // expands to 2 * 10 + 1, 

                                                  // so prints 21, not 22!
• So any argument use in a macro body should be enclosed in ():

#define max(a, b) ((a) > (b) ? (a) : (b)) 
#define dbl(x) (2 * (x))
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Preprocessor: #define

• Another caveat: consider the following:

#define foomacro(x) ((x) + (x)) 
int foofun(int x) { return x + x; }

• Although both seem to be computing the same result, they will 
behave differently if the expression passed in has side-effects:

int x = 10; 
printf("%d\n", foomacro(++x)); // will likely print 23 
x = 10; 
printf("%d\n", foofun(++x));        // prints 22

• Why?

• Note: a good modern C compiler will usually warn you about this
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Preprocessor: #include

• The #include directive performs a textual inclusion of the given file

• Generally, only ever use this for headers - .h files
• Example: #include <stdio.h>
• DO NOT INCLUDE C FILES

• Headers contain 
• Declarations and definitions of functions 

• Macros

• Sometimes also global variables
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Preprocessor: #if/#ifdef/#ifndef/#elif/#else
• This set of directives allows conditional compilation

• Basically, these are compile-time conditionals that hide or expose parts of the source file from or 
to the compiler

• #ifdef checks if the given is true

• Example:

#ifdef UNIX 
PATH_SEPARATOR "/" 

#elif 
defined WINDOWS PATH_SEPARATOR "\\" 

#endif

• Other example:

for (int i = 0; i < length; i++) { 
sum += array[i]; 

#if DEBUG_LEVEL >= 1 
printf("array[%d] = %d, sum = %d\n", i, array[i], sum); 

#endif 

}
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Header files

• Commonly include 
• Function declarations 

int max(int a, int b);

int min(int a, int b);

• Structs

• Macros

42

#ifndef __MYCODE_H__
#define __MYCODE_H__

struct my_struct {
int x;
int y;

};

int my_func(struct my_struct *my_arg);

#endif

#include “mycode.h”

int my_function(struct my_struct *my_arg) 
{

int z;
// do something
return z;

}

mycode.h

mycode.c



Separate Compilation
• my_max.h

int my_max(int a, int b);

• my_max.c

int my_max(int a, int b) { return ((a > b) ? a : b); }

• my_min.h

int my_min(int a, int b);

• my_min.c

int my_min(int a, int b) { return ((a < b) ? a : b); }

• main.c
#include “my_max.h”
#include “my_min.h”

int main(void) {

int x = 1; 
int y = 2; 
int z = 3; 
my_min(x, y);
my_max(y, z);
return 0;

}
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gcc –c my_max.c –o my_max.o
gcc –c my_min.c –o my_min.o
gcc –c main.c –o main.o
gcc my_max.o my_min.o main.o -o my_prog

gcc my_max.c my_min.c main.c –o my_prog

gcc –c my_max.c my_min.c main.c
gcc my_max.o my_min.o main.o –o my_prog

Double quote 
to include 

custom 
header files



Global variables

• Global variables can be declared outside of functions

• They can be accessed by anywhere in the program

• Pros
• Convenient because all functions can access

• Cons
• Can accidentally change

• Abusing global variables can easily introduce bugs
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int global_var = 100;
void print_global_var() {

printf(“%d\n”, global_var);
}
int main(void) {

// do something
return 0;

}

extern int global_var;

void inc_global_var() { global_var++; }
void dec_global_var() { global_var--; }

main.c inc_dec.c


