
Introduction to C

Unit 4

CS 3650 Computer Systems – Summer 2025

* Acknowledgements: created based on Ji-Yong Shin’s slides for the same course

Introduction

• Goal: learn C programming language
• Many languages look like C

• C++, C#, Objective-C, Java, JavaScript, Go, Rust, Swift, etc.

• Many constructs look the same and have similar semantics

• C is a front-end for assembly

• Keeping that in mind, the lecture is not a full-fledged introduction

• Use tutorials on the web or books to teach yourself C

• We want to make sure that we discuss the important bits of C

• Do ask questions, if any

2

C Background

• Programming language developed by Dennis Ritchie in 1972

• A successor language of Bell lab’s programming language “B”

• C was intended to make programming Unix easier

• Early Unix versions in Assembly

• High-level, compared to assembly

• But still low-level conceptual model

• Types - kind of “strong” but not really

• You manage memory

• You can even inline assembly

3

C hello world

• Compilation: gcc hello.c -o hello
• #include <stdio.h>

• imports the library for printf

• Getting command line arguments
• int argc: number of arguments (> 1)
• char * argv[]: array of strings
• ./hello argument test 1

• argc= 4,
• argv[0] = “./hello” (always the path to binary file name)
• argv[1] = “argument”
• argv[2] = “test”
• argv[3] = “1”

• printf
• “Print”s according to the format string
• “\n” adds new line at the end of the string

#include <stdio.h>

int main(int argc, char *argv[])
{
 printf(“hello world!\n”);
 return 1;
}

// prints
// hello world

4

Other familiar features

• Blocks of scope are delimited by { and }
• Variables are declared at the top of the block before calling other

statements
• Variable declared in the block is only visible in that block and any

sub-blocks
• Once the block ends, variable is not visible anymore
• Blocks can be nested

• ; is used at the end of a statements

• Functions are declared pretty much like Java methods:
• return_type function_name(type1 arg1, type2 arg2, ...)

• E.g.,: int max(int first, int second)
• Functions that don’t return anything have a return type void

• E.g.,: void print_many_ints(int first, int second, int
third)

5

Data types

• Basic types
• short: 16 bit integer

• int: 32 bit integer

• long int: 64 bit integer

• char: 8 bit character (‘a’, ‘b’, ‘c’, ‘.’, ‘#’)

• float: 32 bit floating point numbers

• double: 64 bit floating point numbers (3.14, -123.456)

• No Boolean types: integer with 0 or 1 is used instead

• When in doubt about the size you can print sizeof(type)

6

Control flows: if

if (condition) {
 // do stuff

}

if (condition) {
// do stuff

} else {
// do other stuff

}

7

Control flows: while

while (condition) {

// do this while condition holds

}

do {

// do this at least once and then
// keep doing it again while condition holds

} while (condition); // don’t forget the semicolon

8

Control flows: for

1. run the initializer expression

2. if condition holds go to 3, else go to 6

3. do stuff in body

4. run the updater expression

5. Go to 2

6. End

for (initializer; condition; updater) {

}

9

Operators

• Comparison operators: <, >, <=, >=, ==, !=
• while (a <= b)
• while (a != b)
• for (i = 0; i < 10; i++)

• Logical operators: !, &&, ||
• if(x > 0 && x <10)
• while(x > 0 || y > 0)

10

Continue and break

• You can skip the rest of the current iteration of the innermost loop with continue

• You can break out of the innermost loop with break

while (x > 0) {

if (x > 100) {

break;

}

if (x > 10) {

// do something 1

continue;

}

// do something 2

}

 // do something 3

11

1
2
3
4
5
6
7
8
9

10
11
12
13

What line gets
executed after line

8? Line 3?

Control flows: switch

• Condition checks based on matching an expression (usually just a variable)

switch(expression) {
 case constant-expression:

// do something
break; // optional: if you don’t break the next

 // block will be executed unconditionally
 case constant-expression:

// do something
break;

…
default:

// do something
}

12

Pointers

• DataType * pointer
• int *int_pointer;

• double *element = NULL; // good practice to make initialize to NULL

• A pointer stores a memory address of a data instance
int main() {

int a = 10;
int * int_pointer; // currently points to an

arbitrary location
int_pointer = &a; // & returns the address of the

variable

printf(“%p\n”, int_pointer);

// *pointer accesses the value stored in the
memory address

printf(“%d\n”, *int_pointer);

*int_pointer = 20;

printf(“%p\n”, int_pointer);
printf(“%d\n”, *int_pointer);
printf(“%d\n”, a);

return 1;
}

Sample Output:
0x0016
10
0x0016
20
20

a

int_pointer

Addr 0x0016

Addr 0x1234 ?0x0016

?10
20

13

Pointer of pointer

int i = 42;

int *pi = &i;

int **ppi = π

printf("%d %d %d\n", i, *pi, **ppi);

What should be printed?

42 42 42

ppi = pointer to (address of) pi

*ppi = pointer to (address of) i

**ppi = value of i

14

i

pi

Addr 0x0016

Addr 0x0020

42

ppiAddr 0x0030

?

?

0x0016

0x0020

Reason why pointers are considered difficult

• Some program languages do not expose memory addresses

• Accessing an arbitrary address through pointers causes runtime
errors
• When you pass around pointer variables you will often see this

• Memory address is not a value that you directly use in a program
• But it is often more convenient to have access to

• Little control over memory addresses (program assigns for you)
• You will only directly assign NULL or copy existing addresses

• But sometimes you will access RELATIVE addresses

15

Arrays

• Arrays are just pointers with some fancy syntax

• There are static (size known at compile-time) and dynamic array

• We will first discuss static arrays

float nums[4]; // create an array of 4 floats

• These will be stored contiguously in memory

• nums points to the first element

16

Arrays

• We can access them individually using indices, starting from 0

float nums[4]; // create an array of 4
floats nums[0] = 0.1;
nums[1] = 3.14;
nums[2] = 1.5;
nums[3] = 3214;
printf("2nd element: %f\n", nums[1]);

• Arrays can also be initialized:

float nums[4] = { 0.1, 3.14, 1.5, 3214 };
printf("2nd element: %f\n", nums[1]);

17

Arrays

• Pointer-based access

float nums[4] = { 0.1, 3.14, 1.5, 3214 };
printf("2nd element: %f\n", nums[1]);

 printf("1st element: %f\n", *nums);

 printf("2nd element: %f\n", *(nums+1));

 printf("3rd element: %f\n", *(nums+2));

 printf("4th element: %f\n", *(nums+3));

18

String

• In C (like in Assembly for us), strings are just arrays of characters,
terminated by a 0 byte (also written '\0')

• Relevant functions are in <string.h>

• A string literal "Hello, world!" is just the corresponding array of
characters with an extra char for \0

// msg1 and msg2 define exactly the same object in memory
char msg1[6] = "Hello";
char msg2[6] = { 'H', 'e', 'l', 'l', 'o', '\0' };

19

Structs

• Structs are the most useful user-defined data types in C

• Think of them as Java classes, but everything is public

• Structs do not have methods

• A struct stores multiple values of different types together

• It is defined using the struct keyword:

struct address {
unsigned int house_no;
char street[32];
char city[24];
char state[3];
unsigned int zip;

} ; // don’t forget the semicolon.

struct address home, work; // this will allocate two
 // structs on the stack

20

Structs

• To access a field, we use “.”
work.house_no = 360;
strcpy(work.street, "Huntington Ave"); // see man 3

strcpy
strcpy(work.city, "Boston");
strcpy(work.state, "MA");
work.zip = 02115;

• Structs can, of course, be nested:
struct person {

char first[32];
char last[32];
struct address home;

};

• They can be passed to and returned from a function:
struct address get_address(struct person p) { ... }

21

Structs

• Is this allowed?

struct person {
char first[32];
char last[32];
struct person p;

};

22

Structs

• Is this allowed?

struct person {
char first[32];
char last[32];
struct person p;

};

No. Infinite recursion.

23

Structs

• Is this allowed?

struct person {
char first[32];
char last[32];
struct person *p;

};

24

Structs

• Is this allowed?

struct person {
char first[32];
char last[32];
struct person *p;

};

Yes! This is how a linked list works.

25

Typedef

• Writing out struct every time can be tiring
struct address my_home;
struct person myself;
struct address get_home_addr(struct person arg);

• C allows us to introduce type synonyms using typedef:

typedef struct person person_t; // now we can use person_t
 // to mean struct person

• typedef can be used with any type to make code more readable:

typedef unsigned char age_t;

26

Dynamic memory allocations

• Memory can be allocated using the library function malloc
• It is defined in stdlib.h

• Takes the number of bytes we want

• Returns a pointer to the block of memory (if successful)

• Allocated memory needs to be freed using free

int *one_int = malloc(4);
*one_int = 42;
free(one_int);

27

Dynamic memory allocations

• We will mostly use malloc to allocate arrays and structs (below)

int *fifty_ints = malloc(50 * sizeof(int));

for (int i = 0; i < 50; ++i) {
fifty_ints[i] = i * i;

}

free(fifty_ints);

28

Pointers and memory management

• Stack vs heap
• Stack memory is automatically managed

(maintains variables in the scope)

int addsquare(int first, int second) {
int temp = first + second;
return (temp * temp);

}

int main() {
int a = 1;
int b = 2;
int c = addsquare(a, b);
printf(”%d\n”, c);
return 1;

}

a
b
c

first
second
temp

Stack

29

Pointers and memory management

• Stack vs heap
• Heap memory is dynamically allocated and you should manage it

• “malloc” allocates memory

• “free” deallocates memory

void add_elements(struct list *list) {
 int I;
 for (I = 0; I < 3; I ++) {
 struct list_elem *elem = malloc(sizeof(struct list_elem));
 list_push_back(list, elem);
 }
}

int main() {
 struct list my_list;
 list_init(&my_list);
 add_elements(&my_list);
 while (list_size(&my_list) > 0) {
 struct_list_elem *elem = list_pop_front(&my_list);
 free(elem);
 }
 return 1;
}

mylist
(ptr) list

I
(ptr) elem

list_elem
list_elem
list_elem

If you forget to delete, memory
space will be wasted and in the
long run, you can run out of
memory space (memory leak)

Stack Heap

30

Pointers to structs

• Of course, we can have pointers to structs:
struct person *p; // OR person_t *p;

• We can use the address-of operator & to get the address of a struct:
struct address *current = &work;

• We can also allocate memory for structs dynamically,
using malloc and sizeof:
struct person *alice = malloc(sizeof(struct person));
person_t *alice = malloc(sizeof(person_t));

• We can also create arrays of structs:
person_t class[80];
person_t *friends = malloc(5 * sizeof(person_t));
// ...
for (int i = 0; i < 5; ++i) {

if (strcmp(friends[i].home.street, "Huntington Ave") == 0) {
printf("%s lives close!\n", friends[i].first);

}

}

31

Pointers to structs

• Often, pointers are used to pass a struct to a function
• This avoids copying the contents into the function’s stack frame

• When accessing fields via a pointer, we use ->

int lives_in_boston(person_t *p) {

return strcmp(p->home.city, "Boston") != 0;

// equivalent to

// return strcmp((*p).home.city, "Boston") != 0;

}

32

C Demo

33

Preprocessor

• The C preprocessor (CPP) is a separate phase run at the very
beginning of the compilation process

34

Preprocessor

• Just text processing engine

• Modifies the source text based on preprocessor directives

• The main job of CPP is to:
• Include the requested header files

• Define “global constants” – IMPORTANT: these are just textual
macros, that is, pieces of C code that will get spliced wherever the
constant name is mentioned

• Choose which parts of code to include for compilation based on
various conditions

35

Preprocessor: #define

• This directive is used to define a textual macro

• The macro can be a constant macro or a parametrized macro
• E.g.,

#define COUNT 100
#define COURSE "Computer Systems"

• This will define the macros COUNT and COURSE;

• Everywhere else where COUNT is mentioned, it will be replaced
with 100, and COURSE will be replaced with "Computer Systems"

36

Preprocessor: #define

• Note, that the expression is simply substituted for the macro

• It does not get evaluated at the definition site

• Hence there is a subtlety that one has to keep in mind:
Consider,

#define X 10 + 2

int a = X; // expands to 10 + 2
int b = 3 * X; // expands to 2 * 10 + 2

 //this might not be what we expect

• The solution is to always put an expression in parentheses:

#define X (10 + 2)
int b = 3 * X; // expands to 2 * (10 + 2)

37

Preprocessor: #define

• Parametric (“function-like”) Macros
• We can also define macros with arguments using #define
• These look like function calls, but they get expanded at compile-time
• Example,

#define max(a, b) (a > b ? a : b)
printf("%d\n", max(3, 4));

• The argument to a macro does not get evaluated before being used in
the macro, so we have a similar problem as above:
#define dbl(x) (2 * x)
printf("%d\n", dbl(10 + 1)); // expands to 2 * 10 + 1,

 // so prints 21, not 22!
• So any argument use in a macro body should be enclosed in ():

#define max(a, b) ((a) > (b) ? (a) : (b))
#define dbl(x) (2 * (x))

38

Preprocessor: #define

• Another caveat: consider the following:

#define foomacro(x) ((x) + (x))
int foofun(int x) { return x + x; }

• Although both seem to be computing the same result, they will
behave differently if the expression passed in has side-effects:

int x = 10;
printf("%d\n", foomacro(++x)); // will likely print 23
x = 10;
printf("%d\n", foofun(++x)); // prints 22

• Why?

• Note: a good modern C compiler will usually warn you about this

39

Preprocessor: #include

• The #include directive performs a textual inclusion of the given file

• Generally, only ever use this for headers - .h files
• Example: #include <stdio.h>
• DO NOT INCLUDE C FILES

• Headers contain
• Declarations and definitions of functions

• Macros

• Sometimes also global variables

40

Preprocessor: #if/#ifdef/#ifndef/#elif/#else
• This set of directives allows conditional compilation

• Basically, these are compile-time conditionals that hide or expose parts of the source file from or
to the compiler

• #ifdef checks if the given is true

• Example:

#ifdef UNIX
PATH_SEPARATOR "/"

#elif
defined WINDOWS PATH_SEPARATOR "\\"

#endif

• Other example:

for (int i = 0; i < length; i++) {
sum += array[i];

#if DEBUG_LEVEL >= 1
printf("array[%d] = %d, sum = %d\n", i, array[i], sum);

#endif

}

41

Header files

• Commonly include
• Function declarations

int max(int a, int b);

int min(int a, int b);

• Structs

• Macros

42

#ifndef __MYCODE_H__
#define __MYCODE_H__

struct my_struct {
int x;
int y;

};

int my_func(struct my_struct *my_arg);

#endif

#include “mycode.h”

int my_function(struct my_struct *my_arg)
{

int z;
// do something
return z;

}

mycode.h

mycode.c

Separate Compilation
• my_max.h

int my_max(int a, int b);

• my_max.c

int my_max(int a, int b) { return ((a > b) ? a : b); }

• my_min.h

int my_min(int a, int b);

• my_min.c

int my_min(int a, int b) { return ((a < b) ? a : b); }

• main.c
#include “my_max.h”
#include “my_min.h”

int main(void) {

int x = 1;
int y = 2;
int z = 3;
my_min(x, y);
my_max(y, z);
return 0;

}

43

gcc –c my_max.c –o my_max.o
gcc –c my_min.c –o my_min.o
gcc –c main.c –o main.o
gcc my_max.o my_min.o main.o -o my_prog

gcc my_max.c my_min.c main.c –o my_prog

gcc –c my_max.c my_min.c main.c
gcc my_max.o my_min.o main.o –o my_prog

Double quote
to include

custom
header files

Global variables

• Global variables can be declared outside of functions

• They can be accessed by anywhere in the program

• Pros
• Convenient because all functions can access

• Cons
• Can accidentally change

• Abusing global variables can easily introduce bugs

44

int global_var = 100;
void print_global_var() {

printf(“%d\n”, global_var);
}
int main(void) {

// do something
return 0;

}

extern int global_var;

void inc_global_var() { global_var++; }
void dec_global_var() { global_var--; }

main.c inc_dec.c

