CS 3650 Computer Systems — Summer 2025

Memory, stack, and recursion

Unit 3

Northeastern
University * Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, and Alden Jackson’s lecture slides for the same course.

Memory on our machines

* The memory in our machines stores data so we can recall it later

* This occurs at several different levels
* Networked drive (or cloud storage)
* Hard drive
* Dynamic memory
* Cache

* For now, we can think of memory as a giant linear array.

B nrret — manng, A RARA nnean Themeen Cpeneen

o . : SRR o
@ filiiiinnn g i

Northeastern
University

Linear array of memory

* Each ‘box’ here we will say is 1 byte of memory
* (1 byte = 8 bits on most systems)

* Depending on the data we store,

we will need 1 byte, 2 bytes, 4 bytes, etc.

of memory

Northeastern
University

Linear array of memory

—4

* Visually | have organized memory
in a grid, but memory is really
a linear array as depicted below.

* There is one address after the other

Northeastern 4
University

Address

Linear array of memory

. . |
* Visually I have organized memory l

in a grid, but memory is really

a linear array as depicted below.
* There is one address after the other

* Because these addresses grow large, typically we represent them in
hexadecimal (16-base number system: a digit can be 0-9 and A-F)

* (https://www.rapidtables.com/convert/number/hex-to-decimal.html)

d Address: Address: Address: Address: Address:
0x1 0x2 0x3 0x4 0x5

Northeastern
University

https://www.rapidtables.com/convert/number/hex-to-decimal.html

Remember: “Everything is a number”

Data Type m Range (unsigned)
char | b | 1 [010255(=2"8)
“- to 65,535 (=2"16)

_-- to 4,294,967,295 (=2"32)

0 to 18,446,744,073,709,551,615
long int (=2"64)

Northeastern
University

Addressing memory

Northeastern
University

Addressing memory

mov $0x41F08, %rax

We move the address 0x41F08 into rax

(%rax) now points to the contents of the
corresponding chunk of memory

Northeastern
University

Addressing memory

Offset addressing:

® \We can point to addresses by
adjusting the pointer register by an
offset

Northeastern
University

Addressing memory

Offset addressing

8(%rax)

Where does 8(%rax) point to?

Northeastern
University

Addressing memory

Offset addressing

8(%rax)

16(%rax)
Where does 8(%rax) point to?
Where does 16(%rax) point to?

Northeastern
University

Addressing memory

Offset addressing

8(%rax)

16(%rax)
Where does 8(%rax) point to?
Where does 16(%rax) point to?

: 20(%rax)
Where does 20(%rax) point to?

Northeastern
University

Addressing memory

Offset addressing

8(%rax)

16(%rax)
Where does 8(%rax) point to?
Where does 16(%rax) point to?
Where does 20(%rax) point to?
Where does -8(%rax) point to?

20(%rax)

Northeastern
University

Addressing memory

-8(%rax)
Offset addressing -4(%rax)

8(%rax)

16(%rax)
Where does 8(%rax) point to?
Where does 16(%rax) point to?
Where does 20(%rax) point to?
Where does -8(%rax) point to?
Where does -4(%rax) point to?

20(%rax)

Northeastern
University

Addressing memory

mov $0x1020304050607080, (%rax) (%rax)

What does this look like in memory?

Northeastern
University

Addressing memory

mov $0x1020304050607080, (%rax) (%rax)

What does this look like in memory?

Like this?

Northeastern
University

Addressing memory

mov $0x1020304050607080, (%rax) (%rax)

What does this look like in memory?

Like this? NO

Northeastern
University

Addressing memory

mov $0x1020304050607080, (%rax) (%rax)

What does this look like in memory?
Like this? NO

— Xx86 is : the less significant
bytes are stored at lesser addresses

(byte of the number, 0x80, is)

Northeastern
University

Addressing memory

mov $0x1020304050607080, (%rax) (%rax)

What does this look like in memory?

Like this.

Northeastern
University

Addressing memory

movq (%rax), %rio (%rax)

Copies the of the address pointed
to by (%rax) to %r10

movq %rax, %rll

Copies the contents of %rax to %rl1l. Now
(%rax) and (%r11) point to the same
location.

Northeastern
University

Addressing memory

mov! (%rax), %ebx

What’s in %ebx?

| Suffix | Bytes |
b 1
w2

g | 8

rax |
T ax
| . 7a'”h Sl 1
eax
Northeastern

University

21

Addressing memory

mov. (%rax), %ebx (%rax)

What’s in %ebx?

0x50607080

How much we move is determined by
operand sizes / suffixes

Northeastern
University

Addressing memory

mov (%rax), %bx

What's in %bx?

| Suffix | Bytes |
b 1
w2

g | 8

rax |
T ax
| . 7a'”h Sl 1
eax
Northeastern

University

23

Addressing memory

movi 4(%rax), %bx (%rax)
What’s in %bx?

0x3040

Northeastern
University

Addressing memory

mov (%rax), %bl

What’s in %bl?

| Suffix | Bytes |
b 1
w2

g | 8

rax

ax

_ah
eax

al
|

Northeastern
University

25

Addressing memory

movh 6(%rax), %bl (%rax)
What’s in %bl?

0x20

Northeastern
University

Addressing memory

add $8, %rax (%rax)

Modifying %rax changes where it points

Northeastern
University

Addressing memory

-8(%rax)

add , %krax

Modifying %rax changes where it points

Northeastern
University

Addressing memory

-8(%rax)

add , %krax
movq $0x42, (%rax)

How does movq change the memory state?

Northeastern
University

Addressing memory

add , %krax
movq $0x42, (%rax)

Modifying %rax changes where it points

Northeastern
University

Addressing memory: full syntax

(base, ,

ADDRESS = base + (*) +

Mostly used for addressing arrays:

: (immediate) offset / adjustment (e.g., -8, 8, 4, ...)
base: (register) base pointer (%rax in previous examples)
: (register) index of element
: (immediate) size of an element

Northeastern
University

31

Addressing memory: full syntax

(base, ,

ADDRESS = base + (*) +

Mostly used for addressing arrays:

: (immediate) offset / adjustment (e.g., -8, 8, 4, ...)

base: (register) base pointer (%rax in previous examples)
: (register) index of element
: (immediate) size of an element

Northeastern
University

Note:
8(%rax) is equivalent to 8(%rax, 0, 0)

32

Addressing memory: full syntax

mov $0x41F00, %rax

mov $0, %rcx
mov $0, %rio0

loop:
cmp $8, %rcx
jge loop_end

add (%rax, %rcx, 8), %rio
1inc %rcx
jmp loop

loop_end:

Northeastern
University

Addressing memory: full syntax

mov $0x41F00, %rax

mov $0, %rcx
mov $0, %rio0

loop:
cmp $8, %rcx
jge loop_end

add (%rax, %rcx, 8), %rio
1inc %rcx
jmp loop

loop_end . 1+2+3+4+5+6+7+8 = 36

Northeastern
University

Procedures/Functions

Northeastern
University

Procedure Mechanisms

 Several things happen when calling a procedure
(i.e., function or method)

e Pass control

* Start executing from start of procedure
* Return back to where we called from

* Pass data
* Procedure arguments and the return value are passed

* Memory management
* Memory allocated in the procedure, and then deallocated on return

* x86-64 uses the minimum subset required

Northeastern
University

X86-64 Memory Space

* Our view of a program is a giant byte array

* However, it is segmented into different regions

* This separation is determined by
the Application Binary Interface (ABI)

* This is something typically chosen by the OS.

* We traverse our byte array as a stack

Northeastern
University

37

https://en.wikipedia.org/wiki/Application_binary_interface

X86'64 Memory Spa Ce Addresses increasing

Program Memory

Address

Bottom of N
stack 271
Stack I
Top of stack

Our Program Memory Space is divided into several segments. ——

« Some parts of it are for long lived data (the heap) (Unallocated)

« The other is for short-lived data (the stack)

typically used for functions and local variables. Heap

Static Data
Literals
Instructions 0

Northeastern 38

University

x86-64 stack

Program Memory

* There is a stack at the top of the memory

Address
* Yes, the stack that you learned SBt‘:éim of ON_1
in data structures course
Stack I
* You can push and pop data
Top of stack

(Unallocated)

Heap

Static Data

Literals

Instructions 0
Northeastern 39

University

x86-64 stack

Program Memory

Address
2N-1
Stack grows down \
(But hopefully not into the — | Stack
heap -- otherwise error!
You'll observe things like -8 (%rsp)
in your assemble to remind you that
things are growing down in the stack (Unallocated)
That means the top of our
stack is approaching Heap
address 0
Static Data
Literals
Instructions 0
Northeastern 40

University

Xx86-64 stack [

Stack Pointer: %rsp
Always contains lowest address

This is the “top” of the stack

~

/

You'll observe things like -8 (%rsp) == =

in your assemble to remind you that
things are growing down in the stack

Northeastern
University

Program Memory

Address
2N_1
_J | Stack 1
(Unallocated)
Heap
Static Data
Literals
Instructions 0
41

x86-64 stack

Program Memory

Address
Bottom of N
stack 271
. . . Stack I
With a Stack data structure, we can perform two main operations
1. push data onto the stack (add information)
a. Our stack grows 101D i SEES
a. Pushes data to top of the stack
b. Moves the stack pointer downward (Unallocated)
2. pop data off of the stack (remove information) Heap
a. Our stack shrinks
a. Pops data from the top of the stack
b. Moves the stack pointer upward Static Data
Literals
Instructions 0
Northeastern 42

University

x86-64 stack | PUSHQ Example

Program Memory

Address
H « O
Base Pomter.. %rbp —— | Bottom of stack oN_4
Always contains address of
top of current stack frame
e PUSHQ Src Stack 1
o Fetch operand at src
o decrement %rsp by 8 (Q bytes)
o Write operand at address given by %rsp
(Unallocated)
Heap
Stack Pointer: %rsp
Always contains lowest address Static Data
in current stack frame .
Literals
Instructions 0
Northeastern 43

University

x86-64 stack | PUSHQ Example

Program Memory

Address
H « O
Base Pomter.. %rbp —— | Bottom of stack oN_4
Always contains address of
top of current stack frame
e PUSHQ Src Stack 1
o Fetch operand at src
o decrement %rsp by 8 (Q bytes) src (-8)
o Write operand at address given by %rsp
o %rbp is unchanged
°rop & (Unallocated)
Heap
Stack Pointer: %rsp
Always contains lowest address Static Data
in current stack frame .
Literals
Instructions 0
Northeastern 44

University

x86-64 stack | POPQ Example

Program Memory

Address
1 « O,
Base Pomter.. %rbp —— | Bottom of stack oN_4
Always contains address of
e POPQ Dest top of current stack frame Stack .
o Read value at address given by %rsp
o Increment %rsp by 8 (Q bytes) _
o Store value at Dest
o %rbp unchanged
(Unallocated)
Stack Pomter.: %rsp Heap
Always contains lowest
address
Static Data
Literals
Instructions 0
Northeastern 45

University

The Process Stack

* Each process has a stack in memory that stores:
* Local variables
* Arguments to functions
e Return addresses from functions

* On x86:
* The stack grows downwards

* RSP (Stack Pointer) points to the bottom of the stack
(= newest data)

* RBP (Base Pointer) points to the base of the current frame

* Instructions like push, pop, call, ret, int, and iret all modify the stack

Northeastern
University

Creating and deleting stack frames for a function

void main(void) {

foo(x);

baz(y); void foo(int a) {

bar(z);

void bar(int b) {

baz(n) void baz(int c) {

}

code, static

data, etc.

Northeastern
University

47

Creating and deleting stack frames for a function

void main(void) {

foo(x);

baz(y);

Northeastern
University

code, static
data, etc.

48

Creating and deleting stack frames for a function

void main(void) {

ol
baz(y);

void foo(int a) {

bar(z), void bar(int b) {

baz(n) void baz(int c) {

}

Allocation and deallocation of stack frames
require changing %rbp and %rsp

Northeastern
University

code, static
data, etc.

49

Creating a new stack frame for a function and

exiting
Create (enter) the new stack frame
push %rbp # push location of base poilnter to stack

mov %rsp, %rbp # coples the value of the stack pointer
%rsp to the base poilnter %rbp—%rsb and %rsp
now both point to the top of the stack

Do function here... RBP

RBP

RSP

When function is done, remove (leave) stack frame

mov %rbp, %rsp # sets %rsp to %rbp

pop %rbp # pops the top of the stack into %rbp,
where we stored the previous value
from the push

Northeastern 50
University

enter and leave

#H enter creates a stack frame

enter $0, $0 #
H

1s equivalent to
push %rbp

mov %rsp, %rbp

and can allocate space in the stack RBP

enter $24, $0 #
H
H
H

the second arg

Northeastern
University

RBP

RSP

1s equivalent to
push %rbp il
mov %rsp, %rbp
sub $24, %rsp

indicates nesting level

51

enter and leave

leave exits a stack frame: does the inverse of enter RBP
leave # 1s equivalent to

mov %rbp, %rsp o E
pop %rbp
RSP
Recall,

mov %rbp, %rsp # sets %rsp to %rbp

pop %rbp # pops the top of the stack to %rbp,
where we stored the previous
value from enter

Northeastern 52
University

int bar(int a, int b) {
int r=rand();
returna+b-r;

}

int foo(int a) {

intx,vy;
X=a*;
y=a-7/;

return bar(x, y);

}

int main(void) {

1-‘.0-0();

Northeastern
University

stack_exam.c example

Note that generated assembly code can vary
depending on the compiler

The example in the following slides

* are based on 32-bit architecture,

e use push and mov to create a stack frame,
(One can use “enter” instead)

e pass function arguments only through the stack
(One may use %rdi, %rsi, %rdx, %rcx, ... instead)

The stack is usually used to pass the function
arguments when you run out of registers or write
recursive functions

53

S gcc -g -fno-stack-protector -m32 -o stack_exam

stack_exam.c

S objdump --disassemble ./stack_exam

804842a:
804842f:

e8 cO ff ff ff call 80483ef <foo>
b8 00 00 00 00 mov 0x0, eax

080483ef <foo>:

80483ef:
80483f0:
80483f2:
80483f5:
80483f8:
80483fa:
80483fd:
8048400:
8048403:
8048406:

8048409:
804840d:
3048410:
8048413:
8048418:

ONANOANAN .

Note that this is a different assembly
syntax from what we use

55 push ebp

89 e5 mov esp, ebp

83 ec 28 sub 0x28, esp

8b 45 08 [ebp+0x8], eax
01cO eax, eax

89 45 f4 eax, [ebp-0xc]

8b 45 08 [ebp+0x8], eax
83 e8 07 Ox7, eax

89 45 f0

8b 45 f0 mov

89 44 24 04 mov

8b 45 f4 mov [ebp-0xc], eax

89 04 24 mov__eax. (esp

e8 bc ff ff ff call 80483d4 <bar>

c9 leave

-~ ~ 4

12

Memory

main()’s local variables

Argument to foo()

080483d4 <bar>:

80483d4: 55

. mov esp, ebp
80483d7:
80483da:
80483df:

83 ec18 sub 0x18, esp
e8 31 ff ff ff call 8048310 <rand@plt>
89 45 f4

mov eax, [ebp-0xc]

mov |ebp+0xc], eax,
8b 55 08
01do0
2b 45 f4

80483e5:
80483e8:
80483ea:

mov [ebp+0x8], edx
add edx, eax

sub [ebp-0xc], eax

Note that this is a different assembly
syntax from what we use

Memory

foo()’s local variables

5 2" arg for bar()
24 1t arg for bar()
0x8048418 Return addr to foo()

* |leave [J mov ebp, esp; pop ebp;

Return value is placed in EAX

Northeastern
University

A “Design Recipe for Assembly”

1. Signature (C-ish)

2. Pseudocode (ditto)

3. Variable mappings (registers, stack offsets)
4. Skeleton

D. Fill in the blanks

| strongly recommend you to read
Nat Tuck’s Assembly Design Recipe in the reading list

Northeastern
University

56

1. Signature

* What are our arguments?

 What will we return?

factorial:

Northeastern
University

2. Pseudocode

* How do we compute the function?
* Thinking in directly in assembly is hard
 Translating pseudocode, on the other hand, is quite straightforward

* C works pretty well

factorial:

Northeastern
University

3. Variable Mappings

* Need to decide where we store temporary values

* Arguments are given: %rd1, %rsi, %rdx, %rcx, %r8, %r9, then
the stack

Callee must
restore the
original value
before exiting

* Do we keep variables in registers?
e Callee-save? %112, %r13, %rl4, %rl5, %rbx
e Caller-save? %r10, %r11 + argument registers

Do we use the stack?

Callee can freely
modify the register

factorial:

Northeastern
University

59

4. Function Skeleton

Prologue: Epilogue:
e push callee-saves e Lleave - deallocate stack space
e enter - allocate stack space e Restore (pop) any pushed registers
o stack alignment! e ret -returnto callsite

Northeastern
University

4. Function Skeleton

push %ri2
push %ril3
enter $24, $0

leave
pop %ri3
pop %rl2
ret

Northeastern
University

5. Complete the Body

* Translate your pseudocode into assembly - line by line

* Apply variable mappings

Northeastern
University

Variables, Temporaries, Assignment

* Each C variable maps to a register or a stack location
(by using enter)

e Temporary results go into registers

* Registers can be shared / reused - keep track carefully

long X 5;

long y = x * 2 1;

With:
X in %r10 L
y in %rbx
Temporary for x * 2 is %rdx

Northeastern
University

Variables, Temporaries, Assignment

* Each C variable maps to a register or a stack location
(by using enter)

e Temporary results go into registers

* Registers can be shared / reused - keep track carefully

long x = 5; mov $5, %rio
long vy X

With: mov %rlQ, %rdx
X in %r10 imulqg $2, %rdx
y in %rbx add $1, %rdx
Temporary for x * 2 is %rdx mov %rdx, %rbx

Northeastern
University

If statements 1

Variables:

e xis-8(%rbp)
e yis-16(%rbp) or,
temporarily, %r10

Northeastern
University

If statements 1

mov -16(%rbp), %rio
cmp %r10, -8(%rbp)

Variables:

jge elsel:
e xis-8(%rbp)

e yis-16(%rbp) or,
temporarily, %r10 movq $7, -16(%rbp)

elsel:

Northeastern
University

If statements 2

Variables:

e xis-8(%rbp)
e yis-16(%rbp) or,
temporarily, %r10

Northeastern
University

If statements 2

mov -16(%rbp), %rio0
cmp %ri1@, -8(%rbp)
jge elsel:

movg $7, -16(%rbp)
jmp donel

Variables: elsel:

e xis-8(%rbp) movg $9, -16(%rbp)
e yis-16(%rbp) or,

temporarily, %r10
donel:

Northeastern
University

Do-while loops

do {
X = X

} while (x

Variables:

« xis-8(%rbp)

Northeastern
University

Do-while loops

do {
X = X

} while (x

Variables:

e xis-8(%rbp)

Northeastern
University

loop:
add $1, -8(%rbp)

cmp $10, -8(%rbp)

Jj1 loop

While loops

Variables:

« xis-8(%rbp)

Northeastern
University

While loops

loop_test:
cmp $10, -8(%rbp)
jge loop_done

add $1, -8(%rbp)

Variables:

Jjmp loop_test
« xis-8(%rbp)

loop_done:

Northeastern
University

Recursive Functions and the Stack

Northeastern
University

A “Design Recipe for Assembly”

1. Signature (C-ish)

2. Pseudocode (ditto)

3. Variable mappings (registers, stack offsets)
4. Skeleton

D. Fill in the blanks

Northeastern
University

How to Use Recursion?

* Let’s say we want to write a factorial function.

Northeastern
University

How to program Recursion?

* Let’s say we want to write a recursive factorial function.

e ...something like:

long fact(long n) {
if (n 1) {
return 1;

}

return n fact(n 1);

}

Northeastern
University

Factorial

In general: we need to use the stack to hold on to data when doing
recursive calls.

Northeastern
University

Follow Design Recipe: Signature

 What are arguments?
e What is returned?

#long fact(long)
fact:

Northeastern
University

Follow Desigh Recipe: Pseudocode

* The C looks good...

long fact(long n) {
if (n 1) {
return 1;

}

return n fact(n 1);

}

Northeastern
University

Follow Designh Recipe: Variable Mappings

* Storing temp variable on the stack

e Returning result in %rax

#long fact(long n)
fact:
n — (-8)%rbp

res — %rax

Northeastern
University

Follow Design Recipe: Function Skeleton

long fact(long n) {
if (n 1) {
return 1;

#long fact(long n) }
fact:
n

res — %rax }

— (-8)%rbp return n * fact(n - 1);

enter $16, $0

Northeastern
University

Follow Design Recipe: Complete the Body

#long fact(long n)
fact:

n — (-8)%rbp
H res — %rax

enter $16, $0

long fact(long n) {
if (n 1) {
return 1,

}

return n * fact(n 1);

}

Northeastern
University

Follow Design

#long fact(long n)
fact:

n — (-8)%rsp
#t res = %rax

enter $16, $0

Northeastern
University

Recipe: Complete the Body

long fact(long n) {
if (n 1) {
return 1,

}

return n * fact(n 1);

}

