
Assembly

Unit 2

CS 3650 Computer Systems – Summer 1 2025

* Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, and Alden Jackson’s lecture slides for the same course.
 Inspired heavily by slides from Ji-Yong Shin.

Recall the C toolchain pipeline

• All C programs go through this transformation of C --> Assembly -->
Machine Code

2

So we have gone back in time in a way!

3

So we have gone back in time!

4

Look at all of these assembly
languages over 60 years old!

This was the family of
languages folks programmed
in.

Modern Day Assembly is of course still in use

• Still used in games
(console games specifically)

• In hot loops where code must run fast

• Still used on embedded systems

• Useful for debugging any compiled language

• Useful for even non-compiled or Just-In-Time
Compiled languages

• Python has its own bytecode
• Java’s bytecode (which is eventually compiled)

is assembly-like

• Being used on the web
• webassembly

• Still relevant after 60+ years!

5

https://en.wikipedia.org/wiki/WebAssembly

Aside: Java(left) and Python(right) bytecode
examples

6

Assembly is important in our toolchain

• Even if the step is often hidden from us!

7

Intel and x86 Instruction set

• In order to program these chips, there is a specific instruction set
we will use

• Popularized by Intel

• Other companies have contributed.
• AMD has been the main competitor

• (AMD was first to really nail 64 bit architecture around 2001)

• Intel followed up a few years later (2004)

• Intel remains the dominant architecture

• x86 is a CISC architecture
• (CISC pronounced /ˈsɪsk/)

8

https://en.wikipedia.org/wiki/X86

CISC versus RISC

• Complex Instruction Set
Computer (CISC)

• Instructions do more per
operation

• Architecture understands a
series of operations

• Performance can be nearly as
fast or equal to RISC

• Reduced Instruction Set
Computer (RISC)

• Instructions are very small

• Performance is extremely fast

• Generally a simpler
architecture

9

Introduction to Assembly

How are programs created?

• Compile a program to an executable
• gcc main.c -o program

• Compile a program to assembly
• gcc main.c -S -o main.s

• Compile a program to an object file (.o file)
• gcc -c main.c

• Linker (A program called ld) then takes all of your object files and
makes a binary executable.

11

Focus on this step today

• Compile a program to an executable
• gcc main.c -o program

• Compile a program to assembly
• gcc main.c -S -o main.s

• Compile a program to an object file (.o file)
• gcc -c main.c

• Linker (A program called ld) then takes all of your object files and
makes a binary executable.

12

Layers of Abstraction

• As a C programmer you worry about C code
• You work with variables, do some memory management using malloc

and free, etc.

• As an assembly programmer, you worry about assembly
• You also maintain the registers, condition codes, and memory

• As a hardware engineer (programmer)
• You worry about cache levels, layout, clocks, etc.

13

Assembly Abstraction layer

• With Assembly, we lose some of the information we have in C

• In higher-order languages we have many different data types which
help protect us from errors.

• For example: int, long, boolean, char, string, float, double, complex,
…

• In C there are custom data types (structs for example)
• Type systems help us avoid inconsistencies in how we pass data

around.

• In Assembly we lose unsigned/signed information as well!
• However, we do have two data types
• Types for integers (1,2,4,8 bytes) and floats (4,8, or 10 bytes)

[byte = 8 bits]

14

Sizes of data types (C to assembly)

15

C Declaration Intel Data Type Assembly-code
suffix

Size (bytes)

char Byte b 1

short Word w 2

int Double word l 4

long Quad word q 8

char * Quad word q 8

float Single precision s 4

double Double Precision l 8

*Size always depends on architecture

Sizes of data types (C to assembly)

16

C Declaration Intel Data Type Assembly-code
suffix

Size (bytes)

char Byte b 1

short Word w 2

int Double word l 4

long Quad word q 8

char * Quad word q 8

float Single precision s 4

double Double Precision l 8

For us, one word of data is 64 bits
[8 bytes] but may vary on other hardware

https://en.wikipedia.org/wiki/Word_(computer_architecture)
https://stackoverflow.com/questions/7750140/whats-the-difference-between-a-word-and-byte

View as an assembly programmer

• Register - where we store data (heavily used data)

• PC - gives us address of next instruction

• Condition codes - some status information

• Memory – where the program (code) resides and data is stored

17

Assembly Operations (i.e. Our instruction set)

• Things we can do with assembly (and this is about it!)
• Transfer data between memory and register

• Load data from memory to register

• Store register data back into memory

• Perform arithmetic/logical operations on registers and memory

• Transfer Control
• Jumps

• Branches (conditional statements)

18

x86-64 Registers

• Focus on the 64-bit
column.

• These are 16 general
purpose registers for
storing bytes

• (Note sometimes
we do not always
have access to all
16 registers)

• Registers are similar
to variables where
we store values

19

x86-64 Register (zooming in)

• Note register eax addresses the lower 32 bits of rax

• Note register ax addresses the lower 16 bits of eax

• Note register ah addresses the high 8 bits of ax

• Note register al (lowercase L) addresses the low 8 bits of ax

20

Some registers are reserved for special use
(More to come)
• This can be dependent on the instruction being used

• %rsp - keeps track of where the stack pointer is

• (We will do an example with the stack and what this means soon)

21

Program Counter and Memory Addresses

22

Code
Addr 0x00A0 mov ..
Addr 0x00A4 mov ..
Addr 0x00A8 add ..

Data
Addr 0x00F0 Var X
Addr 0x00F4 Var Y

Registers:
rax, rbx, rcx rdx,
…

Memory Addresses

23

● Note that we are looking at virtual addresses in
our assembly when we see addresses.

● This makes us think of the program as a large
byte array.
○ The operating system takes care of

managing this for us with virtual memory.
○ This is one of the key jobs of the operating

system

A First Assembly Instruction

24

Moving data around | mov instruction

• (Remember moving data is all machines do!)

• movq - moves a quad word (8 bytes) of data

• movd - move a double word (4 bytes) of data

movq Source, Dest

25

Order matters
“source to

destination”
“left to right”

Moving data around | mov instruction

• (Remember moving data is all machines do!)

• movq - moves a quad word (8 bytes) of data

• movd - move a double word (4 bytes) of data

movq Source, Dest

• Source or Dest Operands can have different addressing modes
• Immediate - some memory address $0x333 or $-900

• Memory - (%rax) dereferences gets the value in the register and use it
as address

• Register - Just %rax

26

Address:
0xFFFFFFFF
…
0x00000000

Registers:
rax, rbx, rcx rdx,
…

Full List of Memory Addressing Modes

27

Mode Example

Global Symbol MOVQ x, %rax

Immediate MOVQ $56, %rax

Register MOVQ %rbx, %rax

Indirect MOVQ (%rsp), %rax

Base-Relative MOVQ -8(%rbp), %rax

Offset-Scaled-Base-Relative MOVQ -16(%rbx, %rcx, 8), %rax
 (base, index, scale)

Copy data from
addr pointed by

rbp minus 8 to rax

(rbx + rcx * 8) - 16

C equivalent of movq instructions | movq src, dest

28

movq $0x4, %rax %rax = 0x4; (Moving in literal value into register)

movq $-150, (%rax) use value of rax as memory location and set that
location to -150 (*p = -150)

movq %rax, %rdx %rdx = %rax (copy src into dest)

movq %rax, (%rdx) use value of rdx as memory location and set that
location to value stored in rax (*p = %rax)

movq (%rax), %rdx Set value of rdx to value of rax as memory location
(%rdx = *p)

What does each movq do?

C equivalent of movq instructions | movq src, dest

29

movq $0x4, %rax %rax = 0x4; (Moving in literal value into register)

movq $-150, (%rax) use value of rax as memory location and set that
location to -150 (*p = -150)

movq %rax, %rdx %rdx = %rax (copy src into dest)

movq %rax, (%rdx) use value of rdx as memory location and set that
location to value stored in rax (*p = %rax)

movq (%rax), %rdx Set value of rdx to value of rax as memory location
(%rdx = *p)

Some registers are reserved for special use
(More to come)
• This can be dependent on the instruction being used

• %rsp - keeps track of where the stack is for example

• %rdi - the first program argument in a function

• %rsi - the second argument in a function

• %rdx - the third argument of a function

• %rax – return value of a function

30

These conventions
are especially useful
for functions known
as system calls.

https://filippo.io/linux-syscall-table/

https://filippo.io/linux-syscall-table/

Some registers are reserved for special use
(More to come)
• This can be dependent on the instruction being used

• %rsp - keeps track of where the stack is for example

• %rdi - the first program argument in a function

• %rsi - the second argument in a function

• %rdx - the third argument of a function

• %rax – return value of a function

• %rip - the Program Counter

31

Some registers are reserved for special use

• This can be dependent on the instruction being used

• %rsp - keeps track of where the stack is for example

• %rdi - the first program argument in a function

• %rsi - the second argument in a function

• %rdx - the third argument of a function

• %rax – return value of a function

• %rip - the Program Counter

• %r8-%r15 - These eight registers are general purpose registers

32

A little example

33

What does this function do?
(take a few moments to think)
• void mystery(<type> a, <type> b) {

????

}

• mystery:
movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

34

Cheat Sheet

swap of long

• void mystery(long *a, long *b) {
long t0 = *a;
long t1 = *b;
*a = t1;
*b = t0;

}

35

Cheat Sheet

• mystery:
movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

More assembly instructions

• addq Src, Dest Dest=Dest+Src
subq Src, Dest Dest=Dest-Src
imulq Src, Dest Dest=Dest*Src
salq Src, Dest Dest=Dest << Src
sarq Src, Dest Dest=Dest >> Src
shlq Src, Dest Dest=Dest << Src
shrq Src, Dest Dest=Dest >> Src
xorq Src, Dest Dest=Dest ^ Src
andq Src, Dest Dest=Dest & Src
orq Src, Dest Dest=Dest | Src

• Note on order:
We use AT&T syntax: op Src, Dest
Intel syntax: op Dest, Src

36

Value 1 Value 2

x 0110 0011 1001 0101

x>>4 (arithmetic) 0000 0110 1111 1001

x>>4 (logical) 0000 0110 0000 1001

Exercise

• If I have the expression

c = b*(b+a)

• How should I write this is ASM?

37

Cheat Sheet

Exercise

• If I have the expression

c = b*(b+a)

• How should I write this in ASM?

38

Cheat Sheet

• movq a, %rax
movq b, %rbx
addq %rbx, %rax
imulq %rbx
movq %rax, c

IMULQ has a variant with one
operand which multiplies by
whatever is in %rax and stores
result in %rax

imulq has three forms
• imulq X : rax = X * rax
• imulq X Y : Y = X * Y
• imulq X Y Z : Z = X * Y

Some common operations with one-operand

• incq Dest Dest = Dest + 1

• decq Dest Dest = Dest - 1

• negq Dest Dest = -Dest

• notq Dest Dest = ~Dest

39

More Anatomy of Assembly Programs

40

Assembly output of hello.c

• Lines that start with “.” are
compiler directives.

• This tells the assembler
something about the program

• .text is where the actual code
starts.

• Lines that end with “:” are labels
• Useful for control flow
• Lines that start with . and end

with : are usually temporary
locals generated by the compiler.

• Reminder that lines that start with
% are registers

• (.cfi stands for call frame
information)

41

https://stackoverflow.com/questions/2529185/what-are-cfi-directives-in-gnu-assembler-gas-used-for
https://stackoverflow.com/questions/2529185/what-are-cfi-directives-in-gnu-assembler-gas-used-for

Where to Learn more?

• https://diveintosystems.org/

• Intel® 64 and IA-32 Architectures Software Developer Manuals

42

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm

(Volume 2 Instruction set reference)

43

So far we looked at moving data and
doing some operations on data

What’s missing?

44

Comparisons

Compare operands: cmp_, jmp_, set__

• Often we want to compare the values of two registers
• Think if, then, else constructs or loop exit or switch conditions

• cmpq Src2, Src1
• cmpq Src2, Src1 is equivalent to computing Src1-Src2

(but there is no destination register)

• Now we need a method to use the result of compare, but there is
not destination to find the result.

What do we do?

46

Remember condition codes?

• Register - where we store data (heavily used data)

• PC - gives us address of next instruction

• Condition codes - some status information

• Memory – where the program (code) resides and data is stored

47

FLAGS registers

• CF (carry flag)
• Set to 1 when there is a carry out in an unsigned arithmetic operation

• Otherwise set to 0

• ZF (zero flag)
• Set to 1 when the result of an arithmetic operation is zero

• Otherwise set to 0

• SF (signed flag)
• Set to 1 when there is a carry out in a signed arithmetic operation

• Otherwise set to 0

• OF (overflow flag)
• Set to 1 when signed arithmetic operations overflow

• Otherwise set to 0

48

Assembly (cont.)

Unit 2

CS 3650 Computer Systems – Summer 1 2025

* Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, and Alden Jackson’s lecture slides for the same course.
 Inspired heavily by slides from Ji-Yong Shin.

Recap

50

Assembly is important in our toolchain

• Even if the step is often hidden from us!

51

Focus on this step today

• Compile a program to an executable
• gcc main.c -o program

• Compile a program to assembly
• gcc main.c -S -o main.s

• Compile a program to an object file (.o file)
• gcc -c main.c

• Linker (A program called ld) then takes all of your object files and
makes a binary executable.

52

Sizes of data types (C to assembly)

53

C Declaration Intel Data Type Assembly-code
suffix

Size (bytes)

char Byte b 1

short Word w 2

int Double word l 4

long Quad word q 8

char * Quad word q 8

float Single precision s 4

double Double Precision l 8

*Size always depends on architecture

x86-64 Registers

• Focus on the 64-bit
column.

• These are 16 general
purpose registers for
storing bytes

• (Note sometimes
we do not always
have access to all
16 registers)

• Registers are similar
to variables where
we store values

54

x86-64 Register (zooming in)

• Note register eax addresses the lower 32 bits of rax

• Note register ax addresses the lower 16 bits of eax

• Note register ah addresses the high 8 bits of ax

• Note register al (lowercase L) addresses the low 8 bits of ax

55

Program Counter and Memory Addresses

56

Code
Addr 0x00A0 mov ..
Addr 0x00A4 mov ..
Addr 0x00A8 add ..

Data
Addr 0x00F0 Var X
Addr 0x00F4 Var Y

Registers:
rax, rbx, rcx rdx,
…

Moving data around | mov instruction

• (Remember moving data is all machines do!)

• movq - moves a quad word (8 bytes) of data

• movd - move a double word (4 bytes) of data

movq Source, Dest

57

Address:
0xFFFFFFFF
…
0x00000000

Registers:
rax, rbx, rcx rdx,
…

C equivalent of movq instructions | movq src, dest

58

movq $0x4, %rax %rax = 0x4; (Moving in literal value into register)

movq $-150, (%rax) use value of rax as memory location and set that
location to -150 (*p = -150)

movq %rax, %rdx %rdx = %rax (copy src into dest)

movq %rax, (%rdx) use value of rdx as memory location and set that
location to value stored in rax (*p = %rax)

movq (%rax), %rdx Set value of rdx to value of rax as memory location
(%rdx = *p)

More assembly instructions

• addq Src, Dest Dest=Dest+Src
subq Src, Dest Dest=Dest-Src
imulq Src, Dest Dest=Dest*Src
salq Src, Dest Dest=Dest << Src
sarq Src, Dest Dest=Dest >> Src
shlq Src, Dest Dest=Dest << Src
shrq Src, Dest Dest=Dest >> Src
xorq Src, Dest Dest=Dest ^ Src
andq Src, Dest Dest=Dest & Src
orq Src, Dest Dest=Dest | Src

• Note on order:
We use AT&T syntax: op Src, Dest
Intel syntax: op Dest, Src

59

Value 1 Value 2

x 0110 0011 1001 0101

x>>4 (arithmetic) 0000 0110 1111 1001

x>>4 (logical) 0000 0110 0000 1001

Compare operands: cmp_, jmp_, set__

• Often we want to compare the values of two registers
• Think if, then, else constructs or loop exit or switch conditions

• cmpq Src2, Src1
• cmpq Src2, Src1 is equivalent to computing Src1-Src2

(but there is no destination register)

• Now we need a method to use the result of compare, but there is
not destination to find the result.

What do we do?

60

FLAGS registers

• CF (carry flag)
• Set to 1 when there is a carry out in an unsigned arithmetic operation

• Otherwise set to 0

• ZF (zero flag)
• Set to 1 when the result of an arithmetic operation is zero

• Otherwise set to 0

• SF (signed flag)
• Set to 1 when there is a carry out in a signed arithmetic operation

• Otherwise set to 0

• OF (overflow flag)
• Set to 1 when signed arithmetic operations overflow

• Otherwise set to 0

61

Conditional Branches (jumps)

Using the result from cmp => jmp instructions

• In order to read result from cmp, we use jmp to a label

63

Jumping to labels

 0x8048411 <+6>: mov 0x8(%ebp),%eax

 0x8048414 <+9>: cmp 0xc(%ebp),%eax

 0x8048417 <+12>: jle 0x8048421

 0x8048419 <+14>: mov 0xc(%ebp),%eax

 0x804841f <+20>: jmp 0x8048427

 0x8048421 <+22>: mov 0x8(%ebp),%eax

 0x8048427 <+28>: ret

64

Jump instructions | Typically used after a compare

65

Condition Description

jmp 1 unconditional

je ZF jump if equal to 0

jne ~ZF jump if not equal to 0

js SF Negative

jns ~SF non-negative

jg ~(SF^OF) & ~ZF Greater (Signed)

jge ~(SF^OF) Greater or Equal

jl (SF^OF) Less (Signed)

jle (SF ^ OF) | ZF Less or Equal

ja ~CF & ~ZF Above (unsigned)

jb CF Below (unsigned)

Conditional Branch | if-else

• long absoluteDifference (long x, long y) {
long result;

if (x > y)
result = x-y;

else
result = y-x;

}

• absoluteDifference:

66

Some reminders:

%rdi = argument x (first argument)
%rsi = argument y (second argument)
%rax = return value
cmpq src2, src1 = src1 – src2 and sets flags
jle x = jump to x if less than or equal

Take a moment to think about the ASM code

cmpq %rsi, %rdi
jle .else
movq %rdi, %rax
subq %rsi, %rax
ret

movq %rsi, %rax
subq %rdi, %rax
ret

 .else:

Code Exercise
(Take a moment to think what this assembly does)

 movq $0, %rax
mystery:
 incq %rax
 cmpq $5, %rax
 jl mystery

67

Code Exercise | Annotated (while loop example)

 movq $0, %rax
mystery:
 incq %rax
 cmpq $5, %rax
 jl mystery

• Move the value 0 into %rax
(temp = 0)

• Increment %rax
(temp = temp + 1;)

• Compare %rax with 5

• If %rax is smaller than 5 then
 jump to ‘mystery’
If not then
 proceed

68

Code Exercise | Annotated (while loop example)

 movq $0, %rax
mystery:
 incq %rax
 cmpq $5, %rax
 jl mystery

• Move the value 0 into %rax
(temp = 0)

• Label of a location

• Increment %rax
(temp = temp + 1;)

• Compare %rax with 5

• If %rax is smaller than 5 then
 jump to ‘mystery’
If not then
 proceed

69

long temp = 0;
do {

temp = temp + 1;
 }
while(temp < 5);

Equivalent C Code

Calling functions

• (Writing functions next week)
• Use call instruction
• Call accepts one operand

• Address of function body
• Symbolic name often used

Example:

call printf

70

Calling functions

• (Writing functions next week)
• Use call instruction
• Call accepts one operand

• Address of function body
• Symbolic name often used

Example:

call printf

71

Where do arguments go?
Return values?

Calling conventions: SysV ABI x86_64

Arguments

• What if there are more than
six arguments?

• Call stack

Return value: %rax

72

Argument Register

1 %rdi

2 %rsi

3 %rdx

4 %rcx

5 %r8

6 %r9

Calling printf, scanf, etc.

• Takes a variable number of
arguments

• For our assignments:
• Set %al to zero
• mov $0, %al

73

Visit Canvas > Assignments

Work on Lab 2

Work inside
login.khoury.northeastern.edu

74

