CS 3650 Computer Systems —Summer 1 2025

Assembly

Unit 2

Northeastern
University * Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, and Alden Jackson’s lecture slides for the same course.

Incnirad hoavilvs lhhw clidoac frarm i Vana Chin

Recall the C toolchain pipeline

 All C programs go through this transformation of C --> Assembly -->
Machine Code

printf.o
Pre- < . l—' ,
hello.c processor hello.i | Compiler | hello.s [Assembler| hello.o Linker hello
(Eo) (ccl) (as) 1 (1d)
Source Modified Assembly Relocatable Executable
program source program object object
(text) program (text) programs program
(text) (binary) (binary)
Northeastern

University

So we have gone back in time in a way!

| https://en.wikipedia.org/wiki/Timeline_of_programming_languages
1990 Uiy nutauuir sysern mAasreneury
1948 Plankalkul (concept published) . Konrad Zuse
1949 Short Code . John Mauchly and William F. Schmitt
Year . Name . Chief developer, company
10508 [edit]
Year # Name s Chief developer, company s Predecessor(s)
1950 | Short Code ' William F Schmidt, Albert B. Tonik 1% J.R. Logan | Brief Code
1950 Birkbeck Assembler Kathleen Booth ARC
1951 ‘ Superplan » Heinz Rutishauser Plankalkul
1951 ‘ ALGAE v Edward A Voorhees and Karl Balke none (unigue language)
1951 Intermediate Programming Language | Arthur Burks Short Code
1951 Regional Assembly Language Maurice Wilkes EDSAC
1951 . Boehm unnamed coding system v Corrado B6hm CPC Coding scheme
1951 VKIammerauser‘lcke 7 Konrad Zuse VPIanKaIkUI
1951 OMNIBAC Symbolic Assembler Charles Katz Short Code
1951 Stanislaus (Notation) Fritz Bauer none (unigue language)
1951 Whirlwind assembler Charles Adams and Jack Gilmore at MIT Project Whirlwind | EDSAC
1951 ‘ Rochester assembler » Nat Rochester EDSAC
Northeastern

University

@

So we have gone back in time!

| https://en.wikipedia.org/wiki/Timeline_of_programming_languages

Look at all of these assembly
languages over 60 years old!

1940 Cuny nuEauuinr sysiernn
1948 Plankalkil (concept published)
1949 Short Code

Year Name

1950s

[edit]

Year ¢

Name

“»

This was the family of

1950 Short Code

1950 Birkbecszsembler I

1951 Superplan

1951 ALGAE

languages folks programmed

“»

IN.

Northeastern
University

1951 Intermediate Programming Language Short Code

1951 Regioffal Assembly Linguag® Maurice Wilkes EDSAC

1951 Boehm unnamed coding system Corrado B6hm CPC Coding scheme

1951 Klammerausdriicke Konrad Zuse Plankalkul

1951 | OMNIBAC SymbolicfAssembler | | Charles Katz Short Code

1951 Stanislaus (Notation) Fritz Bauer none (unigue language)
1951 Whirlwinl assembler I Charles Adams and Jack Gilmore at MIT Project Whirlwind | EDSAC

1951 | Rochestef[assembler] Nat Rochester EDSAC

Modern Day Assembly is of course still in use

e Still used in games
(console games specifically)

* In hot loops where code must run fast

* Still used on embedded systems

» Useful for debugging any compiled language

e Useful for even non-compiled or Just-In-Time
Compiled languages

* Python has its own bytecode

* Java’s bytecode (which is eventually compiled)
is assembly-like

* Being used on the web
» webassembly

* Still relevant after 60+ years!

Northeastern
University

https://en.wikipedia.org/wiki/WebAssembly

Aside: Java(left) and Python(right) bytecode

W W ome = O

12
15
16
17
z0
23
26
27
28
31
34
c 7
40
41
44
45
48
51
52
53
56
59
62

examples

aload 0

new #3 <acceptanceTests/treeset_personOK/Maingi>

dup

new #8 <java/lang/Object>

dup

invokespecial #10 <java/lang/Object.<init>>

new #12 <java/lang/Integers:

dup

iconst_2

invokespecial #14 <java/lang/Integer.<init>>

invokespecial #17 <acceptanceTests/treeset_personOK/Maingl.<init>>
new #12 <java/lang/Integer>:

dup

iconst_1

invokespecial #14 <java/lang/Integer.<init>>

invokespecial #17 <acceptanceTests/treeset_personOK/Maingd.<{init>>
getstatic #20 <java/lang/System.out>

new #3 <acceptanceTests/treeset_personOK/Maingi>

dup

new #8 <java/lang/Object>

dup

invokespecial #10 <java/lang/Object.<init>>

new #12 <java/lang/Integer>

dup

iconst_2

invokespecial #14 <java/lang/Integer.<init>>

invokespecial #17 <acceptanceTests/treeset_personOK/Maingl.<init>>
invokevirtual #26 <java/io/PrintStream.println>

return

Northeastern
University

def f(n, accum):
ifm €=

return accum

else:

>>> import dis
>>> dis.dis(f)

2

>>

return f(n-1, accum*n)

Lo wWwoe

12
15

16
19
22
25
26
29
32
33
36
37
40

LOAD_FAST
LOAD_CONST
COMPARE_OP
POP_JUMP_IF_FALSE

LOAD_FAST
RETURN_VALUE

LOAD_GLOBAL
LOAD_FAST
LOAD_CONST
BINARY_SUBTRACT
LOAD_FAST
LOAD_FAST
BINARY_MULTIPLY
CALL_FUNCTION
RETURN_VALUE
LOAD_CONST
RETURN_VALUE

@ (n)
1(1)
1 (<=)
16

1 (accum)
e (f)

0 (n)
1 (1)

=

(accum)

(n)

(]

@ (None)

Assembly is important in our toolchain

* Even if the step is often hidden from us!

printf.o

L]

Assembler| hello.o Linker
(as) |
Assembly Relocatable| |
program object
(text) programs
(binary)

nNnrocecsant :
ES ;,[\‘(_,,\‘\;O } \ |

Northeastern
University

Intel and x86 Instruction set

* In order to program these chips, there is a specific instruction set
we will use

* Popularized by Intel

* Other companies have contributed.
* AMD has been the main competitor

* (AMD was first to really nail 64 bit architecture around 2001)
* Intel followed up a few years later (2004)
* Intel remains the dominant architecture

e x86 is a CISC architecture
* (CISC pronounced / 's1sk/)

Northeastern
University

https://en.wikipedia.org/wiki/X86

CISC versus RISC

* Complex Instruction Set * Reduced Instruction Set
Computer (CISC) Computer (RISC)
* Instructions do more per * Instructions are very small
operation * Performance is extremely fast
* Architecture understands a « Generally a simpler
series of operations architecture

* Performance can be nearly as
fast or equal to RISC

Northeastern
University

Introduction to Assembly

Northeastern
University

How are programs created?

* Compile a program to an executable
* gCC Main.c -0 program

* Compile a program to assembly
* gcC main.c -S -o main.s

* Compile a program to an object file (.o file)
* gCC -C main.c

e Linker (A program called Id) then takes all of your object files and
makes a binary executable.

Northeastern
University

Focus on this step today

—Compteaprogram-to-anexecutable
—geematre—eprogram

* Compile a program to assembly
* gcC main.c -S -o main.s

: r b CHeto-fite!
—gee—cmate

e Linker (A program called Id) then takes all of your object files and
makes a binary executable.

Northeastern
University

Layers of Abstraction

* As a C programmer you worry about C code

* You work with variables, do some memory management using malloc
and free, etc.

* As an assembly programmer, you worry about assembly
* You also maintain the registers, condition codes, and memory

* As a hardware engineer (programmer)
* You worry about cache levels, layout, clocks, etc.

Northeastern
University

Assembly Abstraction layer

* With Assembly, we lose some of the information we have in C

* In higher-order languages we have many different data types which
help protect us from errors.

* For example: int, long, boolean, char, string, float, double, complex,

* In C there are custom data types (structs for example)

* Type systems help us avoid inconsistencies in how we pass data
around.

* In Assembly we lose unsigned/signed information as well!
 However, we do have two data types

* Types for integers (1,2,4,8 bytes) and floats (4,8, or 10 bytes)
[byte = 8 bits]

Northeastern
University

Sizes of data types (C to assembly)

Northeastern
University

15

Sizes of data types (C to assembly)

University

C Declaration Intel Data Type Assembly-code Size (bytes)
suffix
char Byte
short Word
nt Double word For us, one of datais bits
long Quad word [8 bytes] but may vary on other hardware
char * Quad word
float Single precision
double Double Precision 8
Northeastern

16

https://en.wikipedia.org/wiki/Word_(computer_architecture)
https://stackoverflow.com/questions/7750140/whats-the-difference-between-a-word-and-byte

View as an assembly programmer

* Register - where we store data (heavily used data)
e PC - gives us address of next instruction
* Condition codes - some status information

* Memory — where the program (code) resides and data is stored

CPU Memor
Addresses y
Registers »
. Data Code
PC < > Data
Condition Instructions Stack
Codes -

Northeastern
University

Assembly Operations (i.e. Our instruction set)

* Things we can do with assembly (and this is about it!)

* Transfer data between memory and register

* Load data from memory to register

 Store register data back into memory
* Perform arithmetic/logical operations on registers and memory
* Transfer Control

* Jumps

* Branches (conditional statements)

P Memor
Jil Addresses e
H P>
Registers ot e
PC < q Data

Condition Instructions Stack
Codes 4

Northeastern
University

Xx86-64 Registers

Not modified for 8-bit operands

* Focus on the 64-bit

Not modified for 16-bit operands

column. - e B opends g i
0 AHY AL

* These are 16 general s BHT | BL
purpose registers for oo

: 6 SIL}
storing bytes ‘ —

* (Note sometimes) i

we do not always 8 RSB

9 RYB

have access to all o s

16 registers) 1 RIIB

12 R12B

. Regist.ers are similar ik
to variables where 15 RED
63 32 31 16 15 8 7 0

we store values

T Not legal with REX prefix

Northeastern
University

+ Requires REX prefix

16-bit
AX
BX
CcX
DX
SI
DI
BP
SP
R8W
ROW

RIOW
RITW
RI2ZW
RI3W
RI4W
RISW

32-bit
EAX
EBX
ECX
EDX
ESI
EDI
EBP
ESP
RSD
ROD
RI10D
R11D
RI12D
R13D
R14D
R15D

64-bil
RAX
RBX
RCX
RDX
RSI
RDI
RBP
RSP
RS
R9
R10
RI11
R12
RI13
R14
RI15

19

x86-64 Register (zooming in)

* Note register eax addresses the lower 32 bits of rax
* Note register ax addresses the lower 16 bits of eax
* Note register ah addresses the high 8 bits of ax

* Note register al (lowercase L) addresses the low 8 bits of ax

rax

aX

€ax

al
|

Northeastern
University

Some registers are reserved for special use
(More to come)
* This can be dependent on the instruction being used

* %rsp - keeps track of where the stack pointer is
* (We will do an example with the stack and what this means soon)

Northeastern
University

Program Counter and Memory Addresses

Registers:
rax, rbx, rcx rdx,

Addresses [BaEs

<

Condition I . Data
nstructions
Codes < Addr OxO0FO0 Var X
Addr OxO0F4 Var Y

Northeastern
University

Addr OxO0AO mov ..
Addr 0x00A4 mov ..
Data Addr 0x00A8 add ..

22

Memory Addresses

Note that we are looking at virtual addresses in
our assembly when we see addresses.

This makes us think of the program as a large
byte array.

o The operating system takes care of
managing this for us with virtual memory.
This is one of the key jobs of the operating
system

Northeastern
University

Memory

Code
Data
Stack

23

A First Assembly Instruction

Northeastern
University

Moving data around | mov instruction

* (Remember moving data is all machines do!)
* movq - moves a quad word (8 bytes) of data

* movd - move a double word (4 bytes) of data

movq Source, Dest

Order matters

“source to
destination”
“left to right”

Northeastern
University

25

4 N

. . . Add :
Moving data around | mov instruction| oerreeer

0x00000000

* (Remember moving data is all machines do!)
* movq - moves a quad word (8 bytes) of data
* movd - move a double word (4 bvtes) of data
If‘nll
Registers: Addresses Memory
Registers o
rax, rbx, rcx rdx, Data Code
movq Source, Dest g » Data
o Condition Instructions Stack
Codes <
I

* Source or Dest Operands can have different addressing modes
* Immediate - some memory address $S0x333 or $-900

 Memory - (%rax) dereferences gets the value in the register and use it
as address

* Register - Just %rax

Northeastern
University

Full List of Memory Addressing Modes

Copy data from
addr pointed by
rbp minus 8 to rax

(rbx + rcx * 8) - 16

Northeastern
University

C equivalent of movq instructions | movq src, dest

What does each movqg do?

Northeastern
University

28

C equivalent of movq instructions | movq src, dest

Northeastern
University

29

Some registers are reserved for special use
(More to come)

* This can be dependent on the instruction being used
* %rsp - keeps track of where the stack is for example
* %rdi - the first program argument in a function

* %rsi - the second argument in a function

* %rdx - the third argument of a function

e %rax — return value of a function

1 write sys_write fs/read write.c

These conventions

are especially useful %rdi %rsi %rdx
for functions known

unsigned int fd const char __user * buf size_t count
as system calls. = =

https://filippo.io/linux-syscall-table/

Northeastern 30
University

https://filippo.io/linux-syscall-table/

Some registers are reserved for special use
(More to come)

* This can be dependent on the instruction being used
* %rsp - keeps track of where the stack is for example
* %rdi - the first program argument in a function

* %rsi - the second argument in a function

* %rdx - the third argument of a function

* %rax — return value of a function

* %rip - the Program Counter

Northeastern
University

Some registers are reserved for special use

* This can be dependent on the instruction being used

* %rsp - keeps track of where the stack is for example

* %rdi - the first program argument in a function

* %rsi - the second argument in a function

* %rdx - the third argument of a function

* %rax — return value of a function

* %rip - the Program Counter

* %r8-%r15 - These eight registers are general purpose registers

Northeastern
University

Northeastern
University

A little example

33

What does this function do?
(take a few moments to think)

 void mystery(<type> a, <type> b) { * mystery:
movq (%rdi), %rax
77?7 movq (%rsi), %rdx
movq %rdx, (%rdi)
} movq %rax, (%rsi)
ret
Cheat Sheet

(Note: This can be dependent on the instruction being
used)

%rsp - keeps track of where the stack is for example
%rdi - the first program argument in a function

%rsi - The second argument in a function

%rdx - the third argument of a function

%rip - the Program Counter

%r8-%r15 - These ones are actually the general purpose
registers

Northeastern
University

swap of long

 void mystery(long *a, long *b) {
long t0 = *3;
long t1 = *b;
*a=11;
*b =t0;
}
Cheat Sheet

(Note: This can be dependent on the instruction being
used)

%rsp - keeps track of where the stack is for example
%rdi - the first program argument in a function

%rsi - The second argument in a function

%rdx - the third argument of a function

%rip - the Program Counter

%r8-%r15 - These ones are actually the general purpose
registers

* mystery:
movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

Northeastern
University

35

More assembly instructions

e addg
subg

imulg

salg
sanrg
shlg
shrqg
Xorq
andg
orqg

* Note on order:
We use AT&T syntax: op Src, Dest x>>4 (arithmetic)
Intel syntax: op Dest, Src

Src,
Src,
Src,
Src,
Src,
Src,
Src,
Src,
Src,
Src,

Northeastern
University

Dest
Dest
Dest
Dest
Dest
Dest
Dest
Dest
Dest
Dest

Dest=Dest+Src
Dest=Dest-Src
Dest=Dest*Src
Dest=Dest << Src
Dest=Dest >> Src
Dest=Dest << Src
Dest=Dest >> Src
Dest=Dest * Src
Dest=Dest & Src
Dest=Dest | Src

Value 1
X 0110 0011
0000 0110

x>>4 (logical) 0000 0110

Value 2
1001 0101
1111 1001

0000 1001

36

Exercise

* |If | have the expression

c = b*(b+a)

e How should | write this is ASM?

Cheat Sheet
addq Src, Dest Dest=Dest+Src
subqg Src, Dest Dest=Dest-Src
imulg Src, Dest Dest=Dest*Src
salq Src, Dest Dest=Dest << Src
sarq Src, Dest Dest=Dest >> Src

shrq Src, Dest Dest=Dest >> Src
xorq Src, Dest Dest=Dest * Src
andq Src, Dest Dest=Dest & Src
orq Src, Dest Dest=Dest | Src

Northeastern
University

Exercise

* If | have the expression * movq a, %rax
movq b, %rbx
c = b*(b+a) addq %rbx, %rax
imulqg %rbx

movq %rax, C
* How should | write this in ASM?

IMULQ has a variant with one

Cheat Sheet operand which multiplies by
addq Src, Dest=Dest+Src

subqg Src, Dest=Dest-Src
imulqg Src, Dest=Dest*Src
salq Src, Dest=Dest << Src
sarq Src, Dest=Dest >> Src

whatever is in %rax and stores
result in %rax

imulqg has three forms

shrq Src, Dest=Dest >> Src .
9 * imulg X : rax =X * rax

xorq Src, Dest=Dest * Src) N
andq Src, Dest=Dest & Src * imulgXY:Y=X*Y
orq Src, Dest=Dest | Src e imulgXYZ:Z=X*Y

Northeastern
University

Some common operations with one-operand

*incq Dest Dest = Dest + 1
* decq Dest Dest = Dest - 1
* negq Dest Dest = -Dest

* notq Dest Dest = ~Dest

Northeastern
University

More Anatomy of Assembly Programs

Northeastern
University

Assembly output of hello.c

Lines that start with “.” are
compiler directives.

* This tells the assembler
something about the program

e .text is where the actual code
starts.

Lines that end with “:” are labels
e Useful for control flow

* Lines that start with . and end
with : are usually temporary
locals generated by the compiler.

Reminder that lines that start with
% are registers

(.cfi stands for call frame
information)

Northeastern
University

main:

BB#0:
.Ltmp2:

.Ltmp3:

.Ltmp4:

.Ltmp5:

«L.8tr:

.file
.text
.globl
.align
.type

.cfi_sta
pushq
.cfi_def

.cfi_off
movq

.cfi_def
subq
leaq
movl
callq
movl
movl
movl
addq
popq
ret

.size
.cfi_end

.type
.section

.asciz

.size

.ident
.section

"hello.c"

main
16, 0x90
main,@function
Emain
rtproc

$rbp
_cfa_offset 16

set %rbp, -16
$rsp, %$rbp

_cfa_register %rbp

$16, %rsp

.L.str, $rdi

$0, -4(3%rbp)

puts

$0, %ecx

$eax, -8(%rbp) # 4-byte Spill
$ecx, %eax

$16, %rsp

$rbp

main, .Ltmp5-main
proc

.L.str,@object # @.str
.rodata.strl.1,"aMs",@progbits,1

"Hello Computer Systems Fall 2022"
L.satr, ‘33

"clang version 3.4.2 (tags/RELEASE_34/dot2-final)"

".note.GNU-stack","",@progbits

41

https://stackoverflow.com/questions/2529185/what-are-cfi-directives-in-gnu-assembler-gas-used-for
https://stackoverflow.com/questions/2529185/what-are-cfi-directives-in-gnu-assembler-gas-used-for

Where to Learn more?

e https://diveintosystems.org/

e Intel® 64 and IA-32 Architectures Software Developer Manuals

Intel® 64 and IA-32 architectures software developer’'s manual combined This document contains the following:
volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4

Volume 1: Describes the architecture and programming
environment of processors supporting I1A-32 and Intel® 64
architectures.

Volume 2: Includes the full instruction set reference, A-Z.
Describes the format of the instruction and provides reference
pages for instructions.

Volume 3: Includes the full system programming guide, parts
1, 2, 3, and 4. Describes the operating-system support
environment of Intel® 64 and 1A-32 architectures, including:
memory management, protection, task management, interrupt
and exception handling, multi-processor support, thermal and
power management features, debugging, performance
monitoring, system management mode, virtual machine
extensions (VMX) instructions, Intel® Virtualization Technology
(Intel® VT), and Intel® Software Guard Extensions (Intel®
SGX).

Volume 4: Describes the model-specific registers of
processors supporting I1A-32 and Intel® 64 architectures.

Northeastern 42
University

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm

(Volume 2 Instruction set reference)

Bookmarks X
INC—Increment by 1
=]+ @ Eb &’1 Opcode Instruction Op/ |64-Bit Compat/ |Description
En |Mode Leg Mode
: F I i i :
N m Nolume T Badic PN E/0 NC r/m8 M Valid Valid Increment /m byte by 1
A hrtaetire REX + FE/O INC /m8 M Valid N.E. Increment r/m byte by 1.
m Vol > OA 2B 2C & FF /0 INC /m16 M Valid Valid Increment r/m word by 1.
e
DUE S (P4 26, FE/0 INC 7/m32 M |Vaiid Valid Increment r/m doubleword by 1.
2D):Instruction Set -
Refotonce A7 REXW + FF /0 INC r/mb4 M Valid N.E. Increment r/m quadword by 1.
' : 40+ w INC r16 0 |NE Valid Increment word register by 1.
> [Chapter 1 About This 40+ d INC 32 0 [NE Vaid | Increment doubleword register by 1.
Manual
_ NOTES:
> [l Chapter 2 Instruction * In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.
Format **40H through 47H are REX prefixes in 64-bit mode.
v [] Chapter 3 Instruction
Set Reference, A-L Instruction Operand Encoding
> [l 3.1 Interpreting the p Op/En Operand 1 Operand 2 Operand 3 Operand 4
Instruction . M ModRM:r/m (r, w) NA NA NA
Reterence Pages 0 opcode + rd (r, w) NA NA NA
> [d 3.2 Instructions
(A-L) Description
N [rhantar 4 Inctrirtinn Adds 1 to the destination onerand. while nreservina the state of the CF flan. The destination anerand can he a

Northeastern
University

So far we looked at moving data and
doing some operations on data

What’s missing?

iversity

Comparisons

Northeastern
University

Compare operands: cmp_, jmp_, set

* Often we want to compare the values of two registers
* Think if, then, else constructs or loop exit or switch conditions

* cmpq Src2, Srcl

* cmpq Src2, Srcl is equivalent to computing Src1-Src2
(but there is no destination register)

* Now we need a method to use the result of compare, but there is
not destination to find the result.

What do we do?

Northeastern
University

Remember condition codes?

e Condition codes - some status information

CPU

PC

Registers

Addresses

Condition
Codes

Data

P>

<

Instructions

>

Northeastern
University

Memory

Code
Data
Stack

47

FLAGS registers

* CF (carry flag)
» Set to 1 when there is a carry out in an unsigned arithmetic operation
e Otherwise setto 0
* ZF (zero flag)
* Set to 1 when the result of an arithmetic operation is zero
* Otherwise setto 0
* SF (signed flag)
* Set to 1 when there is a carry out in a signed arithmetic operation
* Otherwise setto 0
* OF (overflow flag)

* Set to 1 when signed arithmetic operations overflow
e Otherwise setto 0

Northeastern
University

CS 3650 Computer Systems — Summer 1 2025

Assembly (cont.)

Unit 2

Northeastern
University * Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, and Alden Jackson’s lecture slides for the same course.

Incnirad hoavilvs lhhw clidoac frarm i Vana Chin

Northeastern
University

Recap

50

Assembly is important in our toolchain

* Even if the step is often hidden from us!

nrocacent
» ;J[C‘(_,pggo }

Northeastern
University

Assembly
program
(text)

Assembler
(as)

printf.o

L]

hello.o LINKel

Relocatable| |
object
programs
(binary)

51

Focus on this step today

—Compteaprogram-to-anexecutable
—geematre—eprogram

* Compile a program to assembly
* gcC main.c -S -o main.s

: r b CHeto-fite!
—gee—cmate

e Linker (A program called Id) then takes all of your object files and
makes a binary executable.

Northeastern
University

Sizes of data types (C to assembly)

Northeastern
University

53

Xx86-64 Registers

Not modified for 8-bit operands

* Focus on the 64-bit

Not modified for 16-bit operands

column. - e B opends g i
0 AHY AL

* These are 16 general s BHT | BL
purpose registers for oo

: 6 SIL}
storing bytes ‘ —

* (Note sometimes) i

we do not always 8 RSB

9 RYB

have access to all o s

16 registers) 1 RIIB

12 R12B

. Regist.ers are similar ik
to variables where 15 RED
63 32 31 16 15 8 7 0

we store values

T Not legal with REX prefix

Northeastern
University

+ Requires REX prefix

16-bit
AX
BX
CcX
DX
SI
DI
BP
SP
R8W
ROW

RIOW
RITW
RI2ZW
RI3W
RI4W
RISW

32-bit
EAX
EBX
ECX
EDX
ESI
EDI
EBP
ESP
RSD
ROD
RI10D
R11D
RI12D
R13D
R14D
R15D

64-bil
RAX
RBX
RCX
RDX
RSI
RDI
RBP
RSP
RS
R9
R10
RI11
R12
RI13
R14
RI15

54

x86-64 Register (zooming in)

* Note register eax addresses the lower 32 bits of rax
* Note register ax addresses the lower 16 bits of eax
* Note register ah addresses the high 8 bits of ax

* Note register al (lowercase L) addresses the low 8 bits of ax

rax

aX

€ax

al
|

Northeastern
University

Program Counter and Memory Addresses

Registers:
rax, rbx, rcx rdx,

Addresses [BaEs

<

Condition I . Data
nstructions
Codes < Addr OxO0FO0 Var X
Addr OxO0F4 Var Y

Northeastern
University

Addr OxO0AO mov ..
Addr 0x00A4 mov ..
Data Addr 0x00A8 add ..

56

Moving data around | mov instruction

* (Remember moving data is all machines do!)

* movq - moves a quad word (8 bytes) of data

* movd - move a double word (4 bytes) of data /dd I
Address:
OXFFFFFFFF
movq Source, Dest 0x00000000
Il‘ﬂll
Registers: - il O viemery
rax, rbx, rcx rdx, ERISESES Data Code

< > Data

Condition Instructions Stack
Codes <

Northeastern
University

C equivalent of movq instructions | movq src, dest

Northeastern
University

58

More assembly instructions

e addg
subg

imulg

salg
sanrg
shlg
shrqg
Xorq
andg
orqg

* Note on order:
We use AT&T syntax: op Src, Dest x>>4 (arithmetic)
Intel syntax: op Dest, Src

Src,
Src,
Src,
Src,
Src,
Src,
Src,
Src,
Src,
Src,

Northeastern
University

Dest
Dest
Dest
Dest
Dest
Dest
Dest
Dest
Dest
Dest

Dest=Dest+Src
Dest=Dest-Src
Dest=Dest*Src
Dest=Dest << Src
Dest=Dest >> Src
Dest=Dest << Src
Dest=Dest >> Src
Dest=Dest * Src
Dest=Dest & Src
Dest=Dest | Src

Value 1

X 0110 0011
0000 0110
x>>4 (logical) 0000 0110

Value 2

1001 0101

1111 1001

0000 1001

59

Compare operands: cmp_, jmp_, set

* Often we want to compare the values of two registers
* Think if, then, else constructs or loop exit or switch conditions

* cmpq Src2, Srcl

* cmpq Src2, Srcl is equivalent to computing Src1-Src2
(but there is no destination register)

* Now we need a method to use the result of compare, but there is
not destination to find the result.

What do we do?

Northeastern
University

FLAGS registers

* CF (carry flag)
» Set to 1 when there is a carry out in an unsigned arithmetic operation
e Otherwise setto 0
* ZF (zero flag)
* Set to 1 when the result of an arithmetic operation is zero
* Otherwise setto 0
* SF (signed flag)
* Set to 1 when there is a carry out in a signed arithmetic operation
* Otherwise setto 0
* OF (overflow flag)

* Set to 1 when signed arithmetic operations overflow
e Otherwise setto 0

Northeastern
University

Conditional Branches (jumps)

Using the result from cmp => jmp instructions

* In order to read result from cmp, we use jmp to a label

Instruction Description
jmp Label Jump to label
jmp *Operand Jump to specified location
je/ jz Label Jump if equal/zero
jne / jnz Label Jump if not equal/nonzero
js Label Jump if negative
jns Label Jump if nonnegative
jg/ jnle Label Jump if greater (signed)
jge/ jnl Label Jump if greater or equal (signed)
jl/ jnge Label Jump if less (signed)
jle/ jng Label Jump if less or equal
ja/ jnbe Label Jump if above (unsigned)
jae / jnb Label Jump if above or equal (unsigned)
jb / jnae Label Jump if below (unsigned)
jbe / jna Label Jump if below or equal (unsigned)

Northeastern
University

63

Jumping to labels

O0x8048411 <+6>: mov 0x8 (sebp) , seax
0x8048414 <+9>: cmp Oxc (%Sebp), seax

0x8048417 <+12>: Jjle

0x8048419 <+14>: mov Oxc (%ebp), seax
0x804841f <+20>: Jmp 0x8048427
<+22>: mov 0x8 (%ebp) , seax

0x8048427 <+28>: ret

int getSmallest(int x, int y)
int smallest;
if ((x>y) A
smallest = vy;

)
else {

smallest = x;
)

return smallest;

Northeastern
University

Jump instructions

| Typically used after a compare

jmp
je
jne
js
jns
i9
ige
jl
jle
ja

jb

Condition
1

ZF

~(SFAOF) & ~ZF
~(SFAOF)
(SFAOF)

(SF A OF) | ZF
~CF & ~ZF

CF

Description
unconditional
jump if equal to 0
jump if not equal to 0
Negative
non-negative
Greater (Signed)
Greater or Equal
Less (Signed)
Less or Equal
Above (unsigned)

Below (unsigned)

Northeastern
University

65

Conditional Branch | if-else

* long absoluteDifference (long x, long y) { Take a moment to think about the ASM code
long result;
, absoluteDifference:
if (x>y)
result = x-y; cmpq %rsi, %rdi
| jle .else
eise mov(q %rdi, %rax
) subq %rsi, %rax
ret
.else:
Some reminders:
%rdi = argument x (first argument)
%rsi = argument y (second argument)
%rax = return value
cmpq src2, src1 = src1 — src2 and sets flags
jle x = jump to x if less than or equal
Northeastern 66

University

Code Exercise
(Take a moment to think what this assembly does)

movq SO0, %rax
mystery:

incq %rax

cmpq S5, %rax

jl mystery

Northeastern
University

Code Exercise | Annotated (while loop example)

* Move the value 0 into %rax

movq $0, %rax (temp = 0)

mystery: * Increment %rax
incq %rax (temp =temp + 1;)
cmpqg 35, J6rax Compare %rax with 5
jl mystery

e If %rax is smaller than 5 then
jump to ‘mystery’
If not then
proceed

Northeastern
University

Code Exercise | Annotated (while loop example)

movq SO0, %rax

mystery:
incq %rax
cmpq S5, %rax
jl mystery

Equivalent C Code

long temp = 0;

do {
temp =temp + 1;
}

while(temp < 5);

Northeastern
University

* Move the value 0 into %rax
(temp = 0)

e Label of a location

* Increment %rax
(temp =temp + 1;)

* Compare %rax with 5

* |If %rax is smaller than 5 then
jump to ‘mystery’
If not then
proceed

Calling functions

« (Writing functions next week)
« Use call instruction

- Call accepts one operand
- Address of function body
- Symbolic name often used

Example:

call printf

Northeastern
University

Calling functions

« (Writing functions next week)
- Use call instruction

- Call accepts one operand
- Address of function body
- Symbolic name often used

Example:

call printf

Northeastern
University

71

Calling conventions: SysV ABI x86_64

Arguments Return value: %rax

Argument | Register

1 %rdi
2 Yorsi
3 %rdx
4 %rcx
5 %r8
6 %r9

« What if there are more than

Six arguments?
- Call stack

Northeastern
University

Calling printf, scanf, etc.

- Takes a variable number of
arguments

- For our assignments:
« Set %al to zero
- mov SO, %al

Northeastern
University

Visit Canvas > Assignments

Work on Lab 2

Work inside
login.khoury.northeastern.edu

iversity

