
Introduction to Computer Systems

Unit 1

CS 3650 Computer Systems – Summer 1 2025

* Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, and Alden Jackson’s lecture slides for the same course.
Based on Ji-Yong Shin’s slides

Course Instructor

• Dr. Ben Weintraub
• Email: b.weintraub@northeastern.edu

• I grew up in Chicago
• Undergrad at the University of Iowa
• Worked as a software engineer before my PhD

• IBM
• Silicon Valley startup

• PhD here at NU in the Cybersecurity and Privacy Institute
• Research on network security and blockchains

• Measuring the prevalence of predatory trading

• Detecting scammy smart contracts

• Evaluating correctness of payment protocols

• I also coach the NU Women’s Ultimate B team: The Valkyries

2

Who are you?

3

My Thoughts About Learning

• Screens impede learning in lecture settings
• Distracting for yourself and others.
• Paper notes recommended

• This course is designed for undergrads
• There’s nothing you shouldn’t be able to figure out

• Half summer course move quickly
• Plan your time deliberately

• Focus is the biggest challenge to most learners
• When you work, hide your phone—it actually helps

4

AI Policy

1. Generative AI may be used to aid programming (unless
assignment says otherwise), but may not be used for writing or
documentation

2. Any use of Generative AI must come with attribution including the
specific model, date/time of use, and exact prompts. Failure to do
so will be considered plagiarism.

3. Generative AI should be used not to get assignments done as
quickly as possible but rather to facilitate learning.

• AI has limitations including biases.
• It is not always right.

5

Recommendation: don't use AI for anything that will take longer to
verify than if you were to just do it yourself.

What is this course about?

6

Computer Systems courses at Khoury College

• Three courses with the same name!

• A rough visualization of where the course is in the curriculum

7

CS 3650 Content

CS 5600 Content

Introduction to Systems More Advanced Topics

Height of
box =
depth of
content

CS 5007 Content

My goal is to get everyone through & not be intimidated!
You will then be ready to take on CS5600!

Roughly Speaking this course has a few ‘modules’

• Computer Systems Fundamentals
• Terminal, C, Assembly, and Compilers

• Virtualization
• Processes

• Computer Architecture
• Memory/Cache/etc

• Concurrency
• Threads/Locks/Semaphores
• Parallelism

• Persistence
• File Systems
• Storage Devices

• Other Selected Topics
• Debugging/Instrumentation/Final

8

Note Operating Systems is
the biggest chunk. Most
things we do in the course
you should view through the
lens of an operating system.

Computer Systems = Magic?

• I hate to break it to you, but there is no magic in computers.

• Computers are just 1’s and 0’s.

• In this course, we are going to look at 1’s and 0’s, and how to
combine them to create different abstractions.

• That is where the magic comes in however–through the creativity
and the art of computer science.

• Computer Science is an art!

9

“No more magic”

• This is my mantra for all computer
systems courses

• We do not have to look at machines any
more and think there is magic going on.

• Someone programmed our operating
systems, devices, and software

• And they started off where you are!

10

Overview

• Lectures
• Monday–Thursday 3:20 pm – 5:00 pm

• Office Hours
• Thursday 1:00 pm – 3:00 pm (location TBD)

• Course website: https://ben-weintraub.com/classes/cs3650-summer25/
• General Info
• Lecture materials: notes but no slides
• Assignments

• Assignment submission
• Canvas > Gradescope

• Discussions and questions
• Canvas > Piazza
• See sign-up code on Canvas home page

11

https://ben-weintraub.com/classes/cs3650-summer25/

Course Goals

• let us review the syllabus
• https://ben-weintraub.com/classes/cs3650-summer25/

• All course related information is on the webpage

12

https://ben-weintraub.com/classes/cs3650-summer25/

Course Materials

• A laptop is highly recommended

• I do not care what operating system you use on your computer
• Mac (even with an M1) , Linux (Ubuntu, Debian, etc.), Windows

• We will have an online virtualized Linux environment set up for you

13

Course Text

• Free main textbooks
• Dive into Systems
• Operating Systems: Three Easy Pieces (aka

OSTEP)

• Recommended
• Low-Level Programming: C, Assembly, and

Program Execution on Intel® 64
Architecture

• C Programming Language Book
• Computer Systems: A Programmer's

Perspective

• Inspiration drawn from both of these texts.
• Labs and lectures will have several web

resources to check out!

14

https://diveintosystems.org/
http://pages.cs.wisc.edu/~remzi/OSTEP/

Teaching Style

• Learning from multiple sources is more effective
• There will be lectures
• Visuals on slides
• Labs and assignments

• This is a very hands-on class, we will build things

• There will be plenty of opportunity to make mistakes
Do not be afraid to be wrong

• The worst-case scenario is we review

• Please ask questions!
• I try to avoid randomly calling on students--but do participate!

• Come to office hours!

15

E-mail: don’t use it!

• Post on Piazza general questions to
minimize e-mail

• If not already a member, register
through the link on Canvas

• Come to office hours to minimize e-mail

16

How to ask questions

• Ask specific questions
• My code doesn’t work/compile (bad)

• Proper question structure (good)
• I did X
• I expected Y to happen
• Instead, Z happened
• I tried A, B, and C
• I here’s debug info from E, D, and F

• But do not reveal solutions in public Piazza posts

17

Expectations

• You have taken some ‘programming’ related class.
• In the instance that you have not--you can still perform well.

• i.e. Make sure you do the readings

• You know at least one programming language well

• In this course we will use C and get exposed to x86-64 assembly
• C is (still) the industry standard

• (You can pick up whatever other fancy systems language later once
you learn one)

18

Yes I know there is GO, Erlang, Rust,
etc.

Why C?

19

Why C?

20

Why C? (You get the idea)

21

How to be successful in CS 3650

• Read the assigned reading before class

• Attend the class
• Ask questions
• Answer questions
• Take notes

• You need theoretical backgrounds from class to succeed in
labs/assignments/projects

22

How to be successful in CS 3650

• Labs/Assignments/Projects

• Plan ahead and start early

• DO NOT START AT THE LAST MINUTE

• Ask questions early
• Setting up the environment itself could take a long time

• Coding always takes longer than your expectation

• Debugging can take longer than you think

• If your stuck on one thing for more than an hour: ask for help

23

Questions?

24

So what exactly is C?

25

Here is what ‘C’ looks like

26

Here is what ‘C’ looks like

• compile with: clang hello.c -o hello

27

Here is what ‘C’ looks like

• compile with: clang hello.c -o hello

28

‘clang’ is the compiler

hello.c is the name of
our text source code
file

Here is what ‘C’ looks like

• compile with: clang hello.c -o hello

29

And we are using a flag ‘-o’
(dash lower-case Oh) which
specifies the argument that
follows is going to output a
binary called hello.

Here is what ‘C’ looks like

• compile with: clang hello.c -o hello

30

#include brings in a library of
commands related to standard input
and output (so we can print text to
the screen)

Here is what ‘C’ looks like

• compile with: clang hello.c -o hello

31

#puts prints something to the
screen. printf will be another
popular way to do this.

Here is what ‘C’ looks like

• compile with: clang hello.c -o hello

32

And finally we are done with our
program and we return.

Little exercise to see what compiler is doing

• Generate assembly code
• clang -S hello.c

• Investigate assembly

• Compile assembly to executable file
• clang hello.s -o hello

• Generate Object file
• clang -c hello.s

• View Object File
• nl hello.o (unreadable)

• Investigate Object File
• objdump -d hello.o

(disassembly – shows assembly of machine instructions)
• objdump -t hello.o (shows symbol table)

33

C and the compilation process

• In a picture, this is the compilation process from start to finish

• (Note in this class we’ll use clang, but gcc is also fine)

34

Quick view of the assembly

• How many folks have not written
assembly before?

35

Quick view of the assembly

• How many folks have not written assembly before?

36

It’s not too bad, you can pull out
various functions to orient
yourself

Our string

Quick view of objdump

• How many folks have not used objdump before?

37

Quick view of objdump

• How many folks have not used objdump before?

38

Powerful tool to pull out some
information
(Can see functions/libraries used)

So compilers are pretty neat

• When we start looking at some of the information taken in, we
appreciate the job they do.

• i.e. transform high level language to binary

• All of a sudden, writing some C code is not so bad!
• (And it of course is better than pure binary!)

39

C and compilers allow us to control the system

• Core pieces of systems include
hardware(left) and operating system (right)

40

C and compilers allow us to control the system

• Core pieces of systems include
hardware(left) and operating system (right)

41

Let’s take a few minutes to
think about the hardware

Modern Hardware Visual Abstraction

• CPU is the “brain” of modern hardware
• That’s where 1 instruction is executed

at a time

• Only 1!

• (Note: Modern computers have
multiple cores)

• We generally measure the speed at
which a CPU executes in Megahertz or
Gigahertz

• This is a metric for how ‘fast’ a CPU
performs, and how complex of
software can be run.

42

Modern Hardware Visual Abstraction

• Beyond the CPU, a number of
devices may also be connected.

• Buses transfer information from
devices and memory into the CPU.

• There is a lot going on, and this
needs to be managed

• Note: Busses can be thought of as
simple networks, with many things
hardcoded

43

44

• CPU Socket
• Many different physical socket standards

• This a Pentium 1 socket
• Physical standard is less important than Instruction Set Architecture (ISA)

• IBM PCs are Intel 80386 compatible
• Original x86 design
• Intel, AMD, VIA

• Today’s dominant ISA: x86-64, developed by AMD

45

• Slots for random access memory (RAM)
• Pre-1993: DRAM (Dynamic RAM)
• Post-1993: SDRAM (Synchronous DRAM)
• Current standard: Double data rate

SDRAM (DDR SDRAM)
• North Bridge
• Coordinates access to

main memory

46

• Built in I/O also on the PCI/ISA bus• I/O device slots
• Attached to the south-bridge bus
• Very old standard: ISA slots

• Slightly less old standard: PCI slots
• Other types:

• AGP slots
• PCI-X slots

• South-bridge
• Facilitates I/O between

devices, the CPU, and
main memory

47

• Storage connectors
• Also controlled by the South Bridge

• Old standard: Parallel ATA (P-ATA)
• AT Attachment Packet Interface (ATAPI)
• Evolution of the Integrated Drive

Electronics (IDE) standard
• Other standards

• Small Computer System Interface (SCSI)
• Serial ATA (SATA)

48

PCI-x16 slotsPCI slot

SATA Plugs

South Bridge

North Bridge

USB Headers

RAM Slots

CPU socket

PATA
Connectors

C and compilers allow us to control the system

• Core pieces of systems include
hardware(left) and operating system (right)

49

Let’s take a moment to
think about operating
systems

What is an Operating System?

50

Many Different OSes

51

Windows

Linux

BSD

Many Different OSes

52

Windows

Linux

BSD

Operating Systems are actively developed!
(read: co-ops/jobs)

You can actively contribute to the open source
ones now!

What is an Operating System?

• OS is software that sits between user programs and hardware

53

Hardware
(e.g., CPU,

mouse,
keyboard)

User
Program

Operating
System

• OS provides interfaces to computer hardware

– User programs do not have to worry about details

54

Hardware (e.g., mouse, keyboard)

Text Editor

Operating System

Command
Line ShellGUI

Shortly you will
be working in the
shell for your lab
and homework!

55

• OS is a resource manager and control program
• Controls execution of user programs
• Decides between conflicting requests for hardware access
• Attempts to be efficient and fair
• Prevents errors and improper use

Two Common OS Families

• POSIX
• Anything Unix-ish

• e.g. Linux, BSDs, Mac, Android, iOS, QNX

• Windows
• Stuff shipped by Microsoft

• Many other operating systems may exist specific to a domain (e.g.
an operating system for a car, handheld gaming device, or smart
refrigerator)

56

In this course, we will
work in a POSIX
Environment. Our Khoury
machines are Unix based.

Who, what, why, Linux?
https://www.linuxfoundation.org/

• Linux is a family of free open source operating systems
• That means the code is freely available, and you can contribute to the

project!

• It was created by Linus Torvalds
• Variants of Linux are: Ubuntu, Debian, Fedora, Gentoo Linux, Arch Linux,

CentOS, etc.
• They all operate under roughly the same core code, which is called the

kernel.
• Often they differ by the software, user interface, and configuration settings.
• So very often linux software for one flavor of linux will run on the other

with few or no changes.

• Generally we (as systems programmers) like Linux, because it is a clean
and hackable operating system.

• When many folks think of Unix-like operating systems, they may think of
a hacker using a ‘command-line interface’ to program.

57

https://www.linuxfoundation.org/
https://en.wikipedia.org/wiki/Linus_Torvalds

Over 30 years ago...

On Monday, August 26, 1991 at 2:12:08 AM UTC-4, Linus Benedict Torvalds
wrote:
> Hello everybody out there using minix -
>
> I'm doing a (free) operating system (just a hobby, won't be big and
> professional like gnu) for 386(486) AT clones. This has been brewing
> since april, and is starting to get ready. I'd like any feedback on
> things people like/dislike in minix, as my OS resembles it somewhat
> (same physical layout of the file-system (due to practical reasons)
> among other things).
>
> I've currently ported bash(1.08) and gcc(1.40), and things seem to work.
> This implies that I'll get something practical within a few months, and
> I'd like to know what features most people would want. Any suggestions
> are welcome, but I won't promise I'll implement them :-)
>
> Linus (torv...@kruuna.helsinki.fi)
>
> PS. Yes - it's free of any minix code, and it has a multi-threaded fs.
> It is NOT protable (uses 386 task switching etc), and it probably never
> will support anything other than AT-harddisks, as that's all I have :-(.

58

https://groups.google.com/

Over 30 years ago...

On Monday, August 26, 1991 at 2:12:08 AM UTC-4, Linus Benedict Torvalds
wrote:
> Hello everybody out there using minix -
>
> I'm doing a (free) operating system (just a hobby, won't be big and
> professional like gnu) for 386(486) AT clones. This has been brewing
> since april, and is starting to get ready. I'd like any feedback on
> things people like/dislike in minix, as my OS resembles it somewhat
> (same physical layout of the file-system (due to practical reasons)
> among other things).
>
> I've currently ported bash(1.08) and gcc(1.40), and things seem to work.
> This implies that I'll get something practical within a few months, and
> I'd like to know what features most people would want. Any suggestions
> are welcome, but I won't promise I'll implement them :-)
>
> Linus (torv...@kruuna.helsinki.fi)
>
> PS. Yes - it's free of any minix code, and it has a multi-threaded fs.
> It is NOT protable (uses 386 task switching etc), and it probably never
> will support anything other than AT-harddisks, as that's all I have :-(.

59

Linux platforms: Alpha, ARC, ARM, ARM64, Apple M1
C6x, H8/300, Hexagon, Itanium, m68k, Microblaze,
MIPS, NDS32, Nios II, OpenRISC, PA-RISC, PowerPC,
RISC-V, s390, SuperH, SPARC, Unicore32, x86, x86-64,
XBurst, Xtensa

https://groups.google.com/
https://en.wikipedia.org/wiki/DEC_Alpha
https://en.wikipedia.org/wiki/ARC_(processor)
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM64
https://en.wikipedia.org/wiki/Apple_M1
https://en.wikipedia.org/wiki/C6x
https://en.wikipedia.org/wiki/C6x
https://en.wikipedia.org/wiki/H8/300
https://en.wikipedia.org/wiki/Qualcomm_Hexagon
https://en.wikipedia.org/wiki/Itanium
https://en.wikipedia.org/wiki/M68k
https://en.wikipedia.org/wiki/Microblaze
https://en.wikipedia.org/wiki/MIPS_architecture
https://en.wikipedia.org/wiki/MIPS_architecture
https://en.wikipedia.org/wiki/Nios_II
https://en.wikipedia.org/wiki/OpenRISC
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/RISC-V
https://en.wikipedia.org/wiki/RISC-V
https://en.wikipedia.org/wiki/S390
https://en.wikipedia.org/wiki/SuperH
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/Unicore32
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/XBurst
https://en.wikipedia.org/wiki/XBurst
https://en.wikipedia.org/wiki/Xtensa

The command line interface

• The command line interface is at
the highest level just another
program.

• Linux and Mac have terminals
built-in, and Windows as well
(cmd and powershell).

• For Windows: wsl2 is highly
recommended

• From it, we can type in the
names of programs to perform
work for us

60

Why the command line?

• You might argue “I love GUI interfaces, so simple and sleek looking”

• The command line is a lot faster than moving your mouse

• It is also very convenient for ‘scripting’ behavior that you could not
so easily do in a GUI environment.

• Executing a few commands in a row in a script is a piece of cake!

• And if you are working remotely, you often will not have any GUI
environment at all!

• (Often machines you need to access do not have a monitor attached)

61

Shell demo

• ls

• cd (cd ~, /, ..)

• pwd

• tree

• tab

• up/down arrow

• history

62

Feeling overwhelmed or forgetting a command?

• Luckily there are built-in ‘manual pages’

• Called the ‘man pages’ for short.

• Simply type ‘man command_name’ for help
• (Hit ‘q’ to quit the page when you are done)

63

Bash Script Demo

64

Example shell script

65

Example shell script

• I wrote this script in a text editor called ‘emacs’

• You will have to learn vim (or emacs) in this course.
• It’s a great skill to have.

66

Example shell script Executing

• (Am I really 500 years old? Time flies when you are having fun!)

67

• Note “Mike Shah” are the first and second arguments passed into
this program

ssh - secure shell

• Our tool for remote access--which we will do for all of our work!

• ssh some_user_name@login.ccs.neu.edu

• After typing in my password successfully, I am now executing
commands on a machine somewhere on Northeastern’s campus

68

mailto:mikeshah@login.ccs.neu.edu

SSH Demo

69

ssh - secure shell

• Our tool for remote access--which we will do for all of our work!

• ssh some_user_name@login.ccs.neu.edu

• After typing in my password successfully, I am now executing
commands on a machine somewhere on Northeastern’s campus

70

On a shell somewhere else in the world!

mailto:mikeshah@login.ccs.neu.edu

ssh - secure shell

• Our tool for remote access--which we will do for all of our work!

• ssh some_user_name@login.ccs.neu.edu

• After typing in my password successfully, I am now executing
commands on a machine somewhere on Northeastern’s campus

71

Always type in ‘exit’ to terminate your session, and then you are now
executing locally on your machine.

mailto:mikeshah@login.ccs.neu.edu

Version Control

• Shared access to codebase
• Every change is logged
• Allows parallel development of multiple features
• Git, Subversion, Mercurial

72

Git Demo

73

Introduction to Computer Systems
(cont.)

Unit 1

CS 3650 Computer Systems – Summer 1 2025

* Acknowledgements: created based on Christo Wilson, Ferdinand Vesely, and Alden Jackson’s lecture slides for the same course.
Based on Ji-Yong Shin’s slides

Course Progression

• 11 units
• Most units will last two lectures
• Some units will last three or four

lectures

75

Quizzes

• Most units, there will include a quiz on the topics from class
• The intention is to make you engage with the material
• Questions will be from lectures and readings

Testing is a great way to learn, but don’t wait for me to quiz you:

Quiz yourself!

76

Labs

• Practice implementation techniques and tools
• Exercises related to the unit topic

• Preparation for current or upcoming assignment/project
• Graded mostly on effort – the intention is to encourage you to do

the exercises as preparation for assignments
• Ideally, provided class time (30-60 minutes) to work on the labs

• May become homework if more lecture time is needed
•

77

Assignments and Projects

• Most of your grade will come from these
• There will be about eight assignments and two projects
• Out of the eight assignments, the first four are strictly individual,

the remainder and the projects can be completed in pairs

78

Projects

• There will be two projects
• These are longer (two weeks), more substantial programming

exercises
• More planning and/or experimenting required

• Description will be intentionally vague – you are expected to do
more reading, thinking, and asking

79

Grading

80

Regrading: Coach’s Challenge

• Two (2) challenges each semester.
a. Must come to office hours and make a formal challenge specifying

the problem or problems you want to be regraded, and
b. For each of these problems, why you think the problem was

misgraded. Be specific or the same mistake might happen again.
• If error in grading, grade will be corrected: keep your challenge.
• If original grade stands, permanently lose your challenge.
• If two challenges are exhausted, cannot request regrades.
• You may not challenge any points lost due to lateness.
• Group projects

a. All members must have an available challenge to contest a grade.
b. Challenge results apply to each member of the group

81

Meet someone new

• Turn to a person near you
• Introduce yourself

• Where are you from?
• What are your hobbies?

82

Containers and Docker

83

Why containerize applications?

-- build once, run anywhere --

• A container packs together an application and all its
dependencies and isolates the application from the rest of the
machine it runs on.

• Running multiple instances: Because the dependencies are
isolated from each other you can run multiple containers on the
same machine without them interfering with each other.

• Automated installation on clusters: Orchestrators (such as
Kubernetes) automatically distribute containerized applications
across a cluster of servers so you do not have to manually install
applications.

84

Containers vs VMs

• Hypervisors: pure virtual machine environment, a dedicated
kernel-level VMM program runs instead of the OS kernel.

• Hosted VM: VMs are hosted by the host OS, a VMM runs on the
host OS and the guest OS runs on the VMM – e.g. VirtualBox on
your laptop

• Containers: share the kernel with the OS on the machine they are
running on

• VM – fixed resources, overhead of running a whole kernel.
• Faster to start a container than a kernel
• VMs offer better isolation

85

Linux features that make containers work

• Control groups (Cgroups): limits the resources, such as memory,
CPU, and network input/output, that a group of Linux processes
can use

• By limiting the resources a process can use, containers provide
protection against attacks that consume excessive resources

• Linux Namespaces: restricts visibility of resources to a process
• By putting a process in a namespace, you can restrict the resources

that are visible to that process
• Changing the Root Directory: limits the set of files and directories

that a process can see
• By changing the root directory when the container is created, a

container cannot see the host’s entire filesystem

86

What is Docker?

• Docker is an application that allows you to create and build
containers

• Set of commands to manipulate images and containers

• Image: complete and executable version of an application
• Container: is the instantiation of an image

• Docker maintains a repository of images

87

Docker Demo

88

89

What is xv6?

A teaching operating system!
(i.e. small version of Unix)
• https://pdos.csail.mit.edu/6.828/2012/xv6.html

90

https://pdos.csail.mit.edu/6.828/2012/xv6.html

A teaching small & manageable operating system!

• https://pdos.csail.mit.edu/6.828/2012/xv6.html

91

https://pdos.csail.mit.edu/6.828/2012/xv6.html

xv6

• We will be using xv6 to build and implement some Operating
Systems features

• This will give you experience adding features to a large piece of
software.

92

Meet someone new (again)

• Turn to a person near you
• Introduce yourself

• Where are you from?
• What are your hobbies?

93

Summary

• We are going to learn about computer systems
• This includes software (e.g. compilers), hardware, and some operating

system concepts.

• We are going to work in a Unix environment
• This work will be performed on a command-line
• In this course we can access a command-line either:

• Through SSH or a Virtual Machine

• One final thing
• Even with the best planning…
• Some things may change this semester that are beyond our control
• Everyone (including us) needs to be flexible
• If you have an issue, it is better to tell us early than at the last minute

• I’m looking forward to being your guide to Computer Systems

94

Labs

• See the Assignment menu on our Canvas page

• The deliverables from this lab will be part of assignment 1
(released today)

• You need a Khoury ID to get access to the class resources

• Demo of logging in to the class VM

95

